About Nan Price

Nan Price is an Associate Editor at Circuit Cellar. You can reach her at nprice@circuitcellar.com and @assoceditor_cc.

Real-Time Processing for PCIe Digitizers

Agilent U5303A PCIe 12bit High-Speed DigitizerThe U5303A digitizer and the U5340A FPGA development kit are recent enhancements to Agilent Technologies’s PCI Express (PCIe) high-speed digitizers. The U5303A and the U5340A FPGA add next-generation real-time peak detection functionalities to the PCIe devices.

The U5303A is a 12-bit PCIe digitizer with programmable on-board processing. It offers high performance in a small footprint, making it an ideal platform for many commercial, industrial, and aerospace and defense embedded systems. A data processing unit (DPU) based on the Xilinx Virtex-6 FPGA is at the heart of the U5303A. The DPU controls the module functionality, data flow, and real-time signal processing. This feature enables data reduction and storage to be carried out at the digitizer level, minimizing transfer volumes and accelerating analysis.

The U5340A FPGA development kit is designed to help companies and researchers protect their IP signal-processing algorithms. The FPGA kit enables integration of an advanced real-time signal processing algorithm within Agilent Technologies’s high-speed digitizers. The U5340A features high-speed medical imaging, analytical time-of-flight, lidar ranging, non-destructive testing, and a direct interface to digitizer hardware elements (e.g., the ADC, clock manager, and memory blocks). The FPGA kit includes a library of building blocks, from basic gates to dual-port RAM; a set of IP cores; and ready-to-use scripts that handle all aspects of the build flow.

Contact Agilent Technologies for pricing.

Agilent Technologies, Inc.
www.agilent.com

A Workspace for “Engineering Magic”

Brandsma_workspace2

Photo 1—Brandsma describes his workspace as his “little corner where the engineering magic happens.”

Sjoerd Brandsma, an R&D manager at CycloMedia, enjoys designing with cameras, GPS receivers, and transceivers. His creates his projects in a small workspace in Kerkwijk, The Netherlands (see Photo 1). He also designs in his garage, where he uses a mill and a lathe for some small and medium metal work (see Photo 2).

Brandsma_lathe_mill

Photo 2—Brandsma uses this Weiler lathe for metal work.

The Weiler lathe has served me and the previous owners for many years, but is still healthy and precise. The black and red mill does an acceptable job and is still on my list to be converted to a computer numerical control (CNC) machine.

Brandsma described some of his projects.

Brandsma_cool_projects

Photo 3—Some of Brandsma’s projects include an mbed-based camera project (left), a camera with an 8-bit parallel databus interface (center), and an MP3 player that uses a decoder chip that is connected to an mbed module (right).

I built a COMedia C328 UART camera with a 100° lens placed on a 360° servomotor (see Photo 3, left).  Both are connected to an mbed module. When the system starts, the camera takes a full-circle picture every 90°. The four images are stored on an SD card and can be stitched into a panoramic image. I built this project for the NXP mbed design challenge 2010 but never finished the project because the initial idea involved doing some stitching on the mbed module itself. This seemed to be a bit too complicated due to memory limitations.

I built this project built around a 16-MB framebuffer for the Aptina MT9D131 camera (see Photo 3, center). This camera has an 8-bit parallel databus interface that operates on 6 to 80 MHz. This is way too fast for most microcontrollers (e.g., Arduino, Atmel AVR, Microchip Technology PIC, etc.). With this framebuffer, it’s possible to capture still images and store/process the image data at a later point.

This project involves an MP3 player that uses a VLSI VS1053 decoder chip that is connected to an mbed module (see Photo 3, right). The great thing about the mbed platform is that there’s plenty of library code available. This is also the case for the VS1053. With that, it’s a piece of cake to build your own MP3 player. The green button is a Skip button. But beware! If you press that button it will play a song you don’t like and you cannot skip that song.

He continued by describing his test equipment.

Brandma_test_equipment

Photo 4—Brandsma’s test equipment collection includes a Tektronix TDS220 oscilloscope (top), a Total Phase Beagle protocol analyzer (second from top), a Seeed Technology Open Workbench Logic Sniffer (second from bottom), and a Cypress Semiconductor CY7C68013A USB microcontroller (bottom).

Most of the time, I’ll use my good old Tektronix TDS220 oscilloscope. It still works fine for the basic stuff I’m doing (see Photo 4, top). The Total Phase Beagle I2C/SPI protocol analyzer Beagle/SPI is a great tool to monitor and analyze I2C/SPI traffic (see Photo 4, second from top).

The red PCB is a Seeed Technology 16-channel Open Workbench Logic Sniffer (see Photo 4, second from bottom). This is actually a really cool low-budget open-source USB logic analyzer that’s quite handy once in a while when I need to analyze some data bus issues.

The board on the bottom is a Cypress CY7C68013A USB microcontroller high-speed USB peripheral controller that can be used as an eight-channel logic analyzer or as any other high-speed data-capture device (see Photo 4, bottom). It’s still on my “to-do” list to connect it to the Aptina MT9D131 camera and do some video streaming.

Brandsma believes that “books tell a lot about a person.” Photo 5 shows some books he uses when designing and or programming his projects.

Brandsma_books

Photo 5—A few of Brandsma’s “go-to” books are shown.

The technical difficulty of the books differs a lot. Electronica echt niet moeilijk (Electronics Made Easy) is an entry-level book that helped me understand the basics of electronics. On the other hand, the books about operating systems and the C++ programming language are certainly of a different level.

An article about Brandsma’s Sun Chaser GPS Reference Station is scheduled to appear in Circuit Cellar’s June issue.

Compact Computer-on-Module

ADLINKThe cExpress-HL computer-on-module (COM) utilizes an Intel Core processor (formerly known as Haswell-ULT) to provide a compact, high-performance COM solution. The cExpress-HL is well suited for embedded systems in medical, digital signage, gaming, video conferencing, and industrial automation that require a high-performance CPU and graphics, but are constrained by size or thermal management requirements.

The cExpress-HL features a mobile 4th Generation Intel Core i7/i5/i3 processor at 1.7 to 3.3 GHz with Intel HD Graphics 5000 (GT3). The COM delivers high graphics performance while still keeping thermal design power (TDP) below 15 W. Intel’s system-on-chip (SoC) solution has a small footprint that enables it to fit onto the 95 mm × 95 mm COM.0 R2.0 Type 6. The COM provides rich I/O and wide-bandwidth data throughput, including three independent displays (two DDI channels and one LVDS), four PCIe x1 or one PCIe x4 (Gen2), four SATA 6 Gb/s, two USB 3.0 ports, and six USB 2.0 ports.

The cExpress-HL is equipped with ADLINK’s Smart Embedded Management Agent (SEMA), which includes a watchdog timer, temperature and other board information monitoring, and fail-safe BIOS support. SEMA enables users to monitor and manage stand-alone, connected, or remote systems through a cloud-based interface.
Contact ADLINK for pricing.

ADLINK Technology, Inc.
www.adlinktech.com

Q&A: Robotics Mentor and Champion

Peter Matteson, a Senior Project Engineer at Pratt & Whitney in East Hartford, CT, has a passion for robotics. We recently discussed how he became involved with mentoring a high school robotics team, the types of robots the team designs, and the team’s success.—Nan Price, Associate Editor

 

NAN: You mentor a FIRST (For Inspiration and Recognition of Science and Technology) robotics team for a local high school. How did you become involved?

Peter Matteson

Peter Matteson

PETER: I became involved in FIRST in late 2002 when one of my fraternity brothers who I worked with at the time mentioned that FIRST was looking for new mentors to help the team the company sponsored. I was working at what was then known as UTC Power (sold off to ClearEdge Power Systems last year) and the company had sponsored Team 177 Bobcat Robotics since 1995.

After my first year mentoring the kids and experiencing the competition, I got hooked. I loved the competition and strategy of solving a new game each year and designing and building a robot. I enjoyed working with the kids, teaching them how to design and build mechanisms and strategize the games.

The FIRST team’s 2010 robot is shown.

The FIRST team’s 2010 robot is shown.

A robot’s articulating drive train is tested  on an obstacle (bump) at the 2010 competition.

A robot’s articulating drive train is tested on an obstacle (bump) at the 2010 competition.

NAN: What types of robots has your team built?

A temporary control board was used to test the drive base at the 2010 competition.

A temporary control board was used to test the drive base at the 2010 competition.

PETER: Every robot we make is purposely built for a specific game the year we build it. The robots have varied from arm robots with a 15’ reach to catapults that launch a 40” diameter ball, to Frisbee throwers, to Nerf ball shooters.

They have varied in drive train from 4 × 4 to 6 × 6 to articulating 8 × 8. Their speeds have varied from 6 to 16 fps.

NAN: What types of products do you use to build the robots? Do you have any favorites?

PETER: We use a variant of the Texas Instruments (TI) cRIO electronics kit for the controller, as is required per the FIRST competition rules. The motors and motor controllers we use are also mandated to a few choices. We prefer VEX Robotics VEXPro Victors, but we also design with the TI Jaguar motor controllers. For the last few years, we used a SparkFun CMUcam webcam for the vision system. We build with Grayhill encoders, various inexpensive limit switches, and gyro chips.

The team designed a prototype minibot.

The team designed a prototype minibot.

For pneumatics we utilize compressors from Thomas and VIAIR. Our cylinders are primarily from Bimba, but we also use Parker and SMC. For valves we use SMC and Festo. We usually design with clipart plastic or stainless accumulator tanks. Our gears and transmissions come from AndyMark, VEX Robotics’s VEXPro, and BaneBots.

The AndyMark shifter transmissions were a mainstay of ours until last year when we tried the VEXPro transmissions for the first time. Over the years, we have utilized many of the planetary transmissions from AndyMark, VEX Robotics, and BaneBots. We have had good experience with all the manufacturers. BaneBots had a shaky start, but it has vastly improved its products.

We have many other odds and ends we’ve discovered over the years for specific needs of the games. Those are a little harder to describe because they tend to be very specific, but urethane belting is useful in many ways.

NAN: Has your team won any competitions?

Peter’s FIRST team is pictured at the 2009 championship at the Georgia Dome in Atlanta, GA. (Peter is standing fourth from the right.)

Peter’s FIRST team is pictured at the 2009 championship at the Georgia Dome in Atlanta, GA. (Peter is standing fourth from the right.)

PETER: My team is considered one of the most successful in FIRST. We have won four regional-level competitions. We have always shined at the competition’s championship level when the 400 teams from the nine-plus countries that qualify vie for the championship.

In my years on the team, we have won the championship twice (2007 and 2010), been the championship finalist once (2011), won our division, made the final four a total of six times (2006–2011), and were division finalists in 2004.

A FIRST team member works on a robot “in the pits” at the 2011 Hartford, CT, regional competition.

A FIRST team member works on a robot “in the pits” at the 2011 Hartford, CT, regional competition.

Team 177 was the only team to make the final four more than three years in a row, setting the bar at six consecutive trips. It was also the only team to make seven trips to the final four, including in 2001.

NAN: What is your current occupation?

PETER: I am a Senior Project Engineer at Pratt & Whitney. I oversee and direct a team of engineers designing components for commercial aircraft propulsion systems.

NAN: How and when did you become interested in robotics?

PETER: I have been interested in robotics for as long as I can remember. The tipping point was probably when I took an industrial robotics course in college. That was when I really developed a curiosity about what I could do with robots.

The industrial robots course started with basic programming robots for tasks. We had a welding robot we taught the weld path and it determined on its own how to get between points.

We also worked with programming a robot to install light bulbs and then determine if the bulbs were working properly.

In addition to practical labs such as those, we also had to design the optimal robot for painting a car and figure out how to program it. We basically had to come up with a proposal for how to design and build the robot from scratch.

This robot from the 2008 competition holds a 40” diameter ball for size reference.

This robot from the 2008 competition holds a 40” diameter ball for size reference.

NAN: What advice do you have for engineers or students who are designing robots or robotic systems?

PETER: My advice is to clearly set your requirements at the beginning of the project and then do some research into how other people have accomplished them. Use that inspiration as a stepping-off point. From there, you need to build a prototype. I like to use wood, cardboard, and other materials to build prototypes. After this you can iterate to improve your design until it performs exactly as expected.

Energy-Measurement AFEs

Microchip_MCP3913The MCP3913 and the MCP3914 are Microchip Technology’s next-generation family of energy-measurement analog front ends (AFEs). The AFEs integrate six and eight 24-bit, delta-sigma ADCs, respectively, with 94.5-dB SINAD, –106.5-dB THD, and 112-dB Spurious-Free Dynamic Range (SFDR) for high-accuracy signal acquisition and higher-performing end products.

The MCP3914’s two extra ADCs enable the monitoring of more sensors with one chip, reducing its cost and size. The programmable data rate of up to 125 ksps with low-power modes enables designers to scale down for better power consumption or to use higher data rates for advanced signal analysis (e.g., calculating harmonic content).

The MCP3913 and the MCP3914 improve application performance and provide flexibility to adjust the data rate to optimize each application’s rate of performance vs power consumption. The AFEs feature a CRC-16 checksum and register-map lock, for increased robustness. Both AFEs are offered in 40-pin uQFN packages. The MCP3913 adds a 28-pin SSOP package option.

The MCP3913 and the MCP3914 AFEs cost $3.04 each in 5,000-unit quantities. Microchip Technology also announced the MCP3913 Evaluation Board and the MCP3914 Evaluation Board, two new tools to aid in the development of energy systems using these AFEs. Both evaluation boards cost $99.99.

Microchip Technology, Inc.
www.microchip.com