About Nan Price

Nan Price is an Associate Editor at Circuit Cellar. You can reach her at nprice@circuitcellar.com and @assoceditor_cc.

Low-Power Remote-Control Transceivers

LinxThe TT Series remote-control transceiver is designed for bidirectional, long-range, remote-control applications. The module includes an optimized frequency-hopping spread spectrum (FHSS) RF transceiver and an integrated remote-control transcoder.

The FHSS is capable of reaching more than 2 miles in typical line-of-sight environments with 0-dB gain antennas. An amplified version increases the output power from 12.5 to 23.5 dBm, boosting the range to more than 8 miles in line-of-sight environments with 0-dB antennas.

The TT Series transceiver features best-in-class receive sensitivity (up to −111 dBm) and low power consumption (only 19.2 mA in receive mode and 36 mA in transmit mode at 12.5 dBm). The initial version operates in the 902-to-928-Hz frequency band for North and South America.

The transceiver is housed in a compact reflow-compatible surface-mount technology (SMT) package. It doesn’t require any external RF components except an antenna, which simplifies integration and reduces assembly costs.

Programming is not required for basic operation. The transceiver’s primary settings are hardware-selectable, which eliminates the need for an external microcontroller or other digital interface. Eight status lines can be set up in any combination of inputs and outputs to transfer button or contact states. A selectable acknowledgement indicates that the transmission was successfully received. For advanced features, a UART interface provides optional software configuration.

A simple pairing operation configures two modules to operate together. A single button press on each side causes the modules to automatically swap their 32-bit addresses and store them in nonvolatile memory. It can be configured to automatically send an acknowledgement to the transmitting unit either after receiving a command or with external circuitry when an action has taken place. An optional external processor can send two data bytes with the acknowledgement.

The TT Series transceiver module is available as part of Linx Technologies’s master development system that comes with two development boards for benchmarking and prototyping. Each board is populated with a transceiver, two remote-control development boards, and programming boards. The system also includes antennas, a daughterboard with a USB interface, demonstration software, extra modules, and connectors.

Contact Linx Technologies for pricing.

Linx Technologies

“No Opto” Synchronous Forward Controller

LinearThe LT3752/LT3752-1 is a high-input voltage-capable synchronous forward controller with an active clamp transformer reset. A controlled VOUT start-up and shut-down is maintained with an integrated housekeeping controller to bias the primary and secondary ICs. The internal bias generation also reduces the main power transformer’s complexity and size by avoiding the need for extra windings to create bias supplies.

The LT3752 operates over a 6.5-to-100-V input voltage range. The LT3752-1 is well suited for hybrid vehicle (HV) and hybrid electric vehicle (HEV) applications. For up to 400-V inputs and greater, it enables RC start-up from the input voltage with the maximum voltage limited only by the choice of external components.

A ±5% output voltage regulation can be attained without using an optocoupler. An optocoupler can be used to obtain ±1.5% output voltage regulation. The LT3752/-1 uses a pulse transformer to send a control signal to a secondary-side MOSFET driver for the synchronous rectification timing. It can also be used in self-driven applications the power transformer pulses control the secondary-side MOSFETs. With the LT3752/-1, secondary-side ICs no longer require start-up circuitry to operate when the output voltage is 0 V, which enables a controlled VOUT start-up.

The LT3752/-1 has a programmable 100-to-500-kHz operating switching frequency. It can be synchronized to an external clock, so a range of output inductor values and transformer sizes can be used.

The LT3752/-1 is available in a TSSOP-38 package with several pins removed for high-voltage spacing. The LT3752/-1 E- and I-grade versions function from a –40°C-to-125°C junction temperature. The LT3752/-1 H-grade functions from a –40°C-to-150°C operating junction temperature. The LT3752/-1 MP-grade functions from –55°C-to-150°C operating junction temperature.

The LT3752/LT3752-1 costs $3.39 in 1,000-piece quantities.

Linear Technology Corp.

COM Express Module With 2nd-Generation Intel Core

DynatemThe CPU-162-14 is a high-performance COM Express module based on the Intel Core i7 Processor. The COM is designed to work in harsh environments. It includes features to provide extra resilience to vibrations, making it well suited for transportation applications.

The CPU-162-14 includes extended temperature versions for –40°-to-85° operation; direct-mounted RAM and a CPU to withstand stress and vibration; up to 8 GB double data rate type three synchronous dynamic RAM (DDR3 SDRAM); and three video ports including video graphics array (VGA), Intel’s Serial Digital Video Out (SDVO), and low-voltage differential signaling (LVDS).

Contact Dynatem for pricing.

Dynatem, Inc.

Arbitrary Waveform Generator

The AWG18 is an arbitrary waveform generator designed for use with Applicos’s ATX-series of test systems. The waveform generator features an 18-bit resolution at a 300 megasamples-per-second (MSPS) data rate and oversampling at a 600-MSPS or 1.2 gigasamples-per-second (GSPS) rate.

Testing analog systems with high-speed 14- and 16-bit data converters requires extremely clean signals. The traditional approach of filtering away the harmonics is insufficient when dealing with a high signal-to-noise ratio (SNR), maintaining a high spurious-free dynamic range (SFDR), or when a low “close-in carrier noise” is preferred. In these cases, the extra precision from an 18-bit signal value can create a reliable test-stand operation and reduce random failures.

ApplicosMany applications need to use signals other than sine waves to make additional time domain measurements. To accommodate this, the AWG18 has two signal paths: one path starts at DC for time domain and general-purpose measurements that require high-level accuracy. The other path runs from 10 to 100 MHz and is optimized for dynamic signal generation in this frequency range. The typical total harmonic distortion (THD) for frequencies up to 50 MHz is above 100 dBc.

Contact Applicos for pricing.

Applicos BV

Real-Time Processing for PCIe Digitizers

Agilent U5303A PCIe 12bit High-Speed DigitizerThe U5303A digitizer and the U5340A FPGA development kit are recent enhancements to Agilent Technologies’s PCI Express (PCIe) high-speed digitizers. The U5303A and the U5340A FPGA add next-generation real-time peak detection functionalities to the PCIe devices.

The U5303A is a 12-bit PCIe digitizer with programmable on-board processing. It offers high performance in a small footprint, making it an ideal platform for many commercial, industrial, and aerospace and defense embedded systems. A data processing unit (DPU) based on the Xilinx Virtex-6 FPGA is at the heart of the U5303A. The DPU controls the module functionality, data flow, and real-time signal processing. This feature enables data reduction and storage to be carried out at the digitizer level, minimizing transfer volumes and accelerating analysis.

The U5340A FPGA development kit is designed to help companies and researchers protect their IP signal-processing algorithms. The FPGA kit enables integration of an advanced real-time signal processing algorithm within Agilent Technologies’s high-speed digitizers. The U5340A features high-speed medical imaging, analytical time-of-flight, lidar ranging, non-destructive testing, and a direct interface to digitizer hardware elements (e.g., the ADC, clock manager, and memory blocks). The FPGA kit includes a library of building blocks, from basic gates to dual-port RAM; a set of IP cores; and ready-to-use scripts that handle all aspects of the build flow.

Contact Agilent Technologies for pricing.

Agilent Technologies, Inc.