About Mary Wilson

Mary Wilson is Circuit Cellar's Managing Editor. You can reach her at mwilson@circuitcellar.com and @mgeditor_cc.

An Engineer Who Retires to the Garage

Jerry Brown, of Camarillo, CA, retired from the aerospace industry five years ago but continues to consult and work on numerous projects at home. For example, he plans to submit an article to Circuit Cellar about a Microchip Technology PIC-based computer display component (CDC) he designed and built for a traffic-monitoring system developed by a colleague.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and is part of a traffic monitoring system he has been working on.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and part of  his traffic monitoring system project.

“The traffic monitoring system is composed of a beam emitter component (BEC), a beam sensor component (BSC), and the CDC, and is intended for unmanned use on city streets, boulevards, and roadways to monitor and record the accumulative count, direction of travel, speed, and time of day for vehicles that pass by a specific location during a set time period,” he says.

Brown particularly enjoys working with PWM LED controllers. Circuit Cellar editors look forward to seeing his project article. In the meantime, he sent us the following description and pictures of the space where he conceives and executes his creative engineering ideas.

Jerry's garage-based lab.

Brown’s garage-based lab.

My workspace, which I call my “lab,” is on one side of my two-car garage and is fairly well equipped. (If you think it looks a bit messy, you should have seen it before I straightened it up for the “photo shoot.”)  

I have a good supply of passive and active electronic components, which are catalogued and, along with other parts and supplies, are stored in the cabinets and shelves alongside and above the workbench. I use the computer to write and compile software programs and to program PIC flash microcontrollers.  

The photos show the workbench and some of the instrumentation I have in the lab, including a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.  

The black box visible on top of the workbench is an embedded controller and is part of the traffic monitoring system that I have been working on.

Instruments in Jerry's lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.

Instruments in Brown’s lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station. 

Brown has a BS in Electrical Engineering and a BS in Business Administration from California Polytechnic State University in San Luis Obispo, CA. He worked in the aerospace industry for 30 years and retired as the Principal Engineer/Manager of a Los Angeles-area aerospace company’s electrical and software design group.

Wireless Data Links (Part 1)

In Circuit Cellar’s February issue, the Consummate Engineer column launches a multi-part series on wireless data links.

“Over the last two decades, wireless data communication devices have been entering the realm of embedded control,” columnist George Novacek says in Part 1 of the series. “The technology to produce reasonably priced, reliable, wireless data links is now available off the shelf and no longer requires specialized knowledge, experience, and exotic, expensive test equipment. Nevertheless, to use wireless devices effectively, an engineer should understand the principles involved.”

Radio communicationsPart 1 focuses on radio communications, in particular low-power, data-carrying wireless links used in control systems.

“Even with this limitation, it is a vast subject, the surface of which can merely be scratched,” Novacek says. “Today, we can purchase ready-made, low-power, reliable radio interface modules with excellent performance for an incredibly low price. These devices were originally developed for noncritical applications (e.g., garage door openers, security systems, keyless entry, etc.). Now they are making inroads into control systems, mostly for remote sensing and computer network data exchange. Wireless devices are already present in safety-related systems (e.g., remote tire pressure monitoring), to say nothing about their bigger and older siblings in remote control of space and military unmanned aerial vehicles (UAVs).”

An engineering audience will find Novacek’s article a helpful overview of fundamental wireless communications principles and topics, including RF circuitry (e.g., inductor/capacitor, or LC, circuits), ceramic surface acoustic wave (SAW) resonators, frequency response, bandwidth, sensitivity, noise issues, and more.

Here is an article excerpt about bandwidth and achieving its ideal, rectangular shape:

“The bandwidth affects receiver selectivity and/or a transmitter output spectral purity. The selectivity is the ability of a radio receiver to reject all but the desired signal. Narrowing the bandwidth makes it possible to place more transmitters within the available frequency band. It also lowers the received noise level and increases the selectivity due to its higher Q. On the other hand, transmission of every signal but a non-modulated, pure sinusoid carrier—which, therefore, contains no information—requires a certain minimum bandwidth. The required bandwidth is determined by the type of modulation and the maximum modulating frequency.

“For example, AM radios carry maximum 5-kHz audio and, consequently, need 10-kHz bandwidth to accommodate the carrier with its two 5-kHz sidebands. Therefore, AM broadcast stations have to be spaced a minimum of 20 kHz apart. However, narrowing the bandwidth will lead to the loss of parts of the transmitted information. In a data-carrying systems, it will cause a gradual increase of the bit error rate (BER) until the data becomes useless. At that point, the bandwidth must be increased or the baud rate must be decreased to maintain reliable communications.

“An ideal bandwidth would have a shape of a rectangle, as shown in Figure 1 by the blue trace. Achieving this to a high degree with LC circuits can get quite complicated, but ceramic resonators used in modern receivers can deliver excellent, near ideal results.”

Figure 1: This is the frequency response and bandwidth of a parallel resonant LC circuit. A series circuit graph would be inverted.

Figure 1: This is the frequency response and bandwidth of a parallel resonant LC circuit. A series circuit graph would be inverted.

To learn more about control-system wireless links, check out the February issue now available for membership download or single-issue purchase. Part 2 in Novacek’s series discusses transmitters and antennas and will appear in our March issue.

Experimenting with Dielectric Absorption

Dielectric absorption occurs when a capacitor that has been charged for a long time briefly retains a small amount of voltage after a discharge.

“The capacitor will have this small amount of voltage even if an attempt was made to fully discharge it,” according to the website wiseGEEK. “This effect usually lasts a few seconds to a few minutes.”

While it’s certainly best for capacitors to have zero voltage after discharge, they often retain a small amount through dielectric absorption—a phenomenon caused by polarization of the capacitor’s insulating material, according to the website. This voltage (also called soakage) is totally independent of capacity.

At the very least, soakage can impair the function of a circuit. In large capacitor systems, it can be a serious safety hazard.

But soakage has been around a long time, at least since the invention of the first simple capacitor, the Leyden jar, in 1775. So columnist Robert Lacoste decided to have some “fun” with it in Circuit Cellar’s February issue, where he writes about several of his experiments in detecting and measuring dielectric absorption.

Curious? Then consider following his instructions for a basic experiment:

Go down to your cellar, or your electronic playing area, and find the following: one large electrolytic capacitor (e.g., 2,200 µF or anything close, the less expensive the better), one low-value discharge resistor (100 Ω or so), one DC power supply (around 10 V, but this is not critical), one basic oscilloscope, two switches, and a couple of wires. If you don’t have an oscilloscope on hand, don’t panic, you could also use a hand-held digital multimeter with a pencil and paper, since the phenomenon I am showing is quite slow. The only requirement is that your multimeter must have a high-input impedance (1 MΩ would be minimum, 10 MΩ is better).

Figure 1: The setup for experimenting with dielectric absorption doesn’t require more than a capacitor, a resistor, some wires and switches, and a voltage measuring instrument.

Figure 1: The setup for experimenting with dielectric absorption doesn’t require more than a capacitor, a resistor, some wires and switches, and a voltage measuring instrument.

Figure 1 shows the setup. Connect the oscilloscope (or multimeter) to the capacitor. Connect the power supply to the capacitor through the first switch (S1) and then connect the discharge resistor to the capacitor through the second switch (S2). Both switches should be initially open. Photo 1 shows you my simple test configuration.

Now turn on S1. The voltage across the capacitor quickly reaches the power supply voltage. There is nothing fancy here. Start the oscilloscope’s voltage recording using a slow time base of 10 s or so. If you are using a multimeter, use a pen and paper to note the measured voltage. Then, after 10 s, disconnect the power supply by opening S1. The voltage across the capacitor should stay roughly constant as the capacitor is loaded and the losses are reasonably low.

Photo 1: My test bench includes an Agilent Technologies DSO-X-3024A oscilloscope, which is oversized for such an experiment.

Photo 1: My test bench includes an Agilent Technologies DSO-X-3024A oscilloscope, which is oversized for such an experiment.

Now switch on S2 long enough to fully discharge the capacitor through the 100-Ω resistor. As a result of the discharge, the voltage across the capacitor’s terminals will quickly become very low. The required duration for a full discharge is a function of the capacitor and resistor values, but with the proposed values of 2,200 µF and 100 Ω, the calculation shows that it will be lower than 1 mV after 2 s. If you leave S2 closed for 10 s, you will ensure the capacitor is fully discharged, right?

Now the fun part. After those 10 s, switch off S2, open your eyes, and wait. The capacitor is now open circuited, at least if the voltmeter or oscilloscope input current can be neglected, so the capacitor voltage should stay close to zero. But you will soon discover that this voltage slowly increases over time with an exponential shape.

Photo 2 shows the plot I got using my Agilent Technologies DSO-X 3024A digital oscilloscope. With the capacitor I used, the voltage went up to about 120 mV in 2 min, as if the capacitor was reloaded through another voltage source. What is going on here? There aren’t any aliens involved. You have just discovered a phenomenon called dielectric absorption!

Photo 2: I used a 2,200-µF capacitor, a 100-Ω discharge resistor, and a 10-s discharge duration to obtain this oscilloscope plot. After 2 min the voltage reached 119 mV due to the dielectric absorption effect.

Photo 2: I used a 2,200-µF capacitor, a 100-Ω discharge resistor, and a 10-s discharge duration to obtain this oscilloscope plot. After 2 min the voltage reached 119 mV due to the dielectric absorption effect.

Nothing in Lacoste’s column about experimenting with dielectric absorption is shocking (and that’s a good thing when you’re dealing with “hidden” voltage). But the column is certainly informative.

To learn more about dielectric absorption, what causes it, how to detect it, and its potential effects on electrical systems, check out Lacoste’s column in the February issue. The issue is now available for download by members or single-issue purchase.

Lacoste highly recommends another resource for readers interested in the topic.

“Bob Pease’s Electronic Design article ‘What’s All This Soakage Stuff Anyhow?’ provides a complete analysis of this phenomenon,” Lacoste says. “In particular, Pease reminds us that the model for a capacitor with dielectric absorption effect is a big capacitor in parallel with several small capacitors in series with various large resistors.”

Remote Control and Monitoring of Household Devices

Raul Alvarez Torrico, a freelance electronic engineer from Bolivia, has long been interested in wireless device-to-device communication.

“So when the idea of the Internet of Things (IoT) came around, it was like rediscovering the Internet,” he says.

I’m guessing that his dual fascinations with wireless and the IoT inspired his Home Energy Gateway project, which won second place in the 2012 DesignSpark chipKIT challenge administered by Circuit Cellar.

“The system enables users to remotely monitor their home’s power consumption and control household devices (e.g., fans, lights, coffee machines, etc.),” Alvarez says. “The main system consists of an embedded gateway/web server that, aside from its ability to communicate over the Internet, is also capable of local communications over a home area wireless network.”

Alvarez catered to his interests by creating his own wireless communication protocol for the system.

“As a learning exercise, I specifically developed the communication protocol I used in the home area wireless network from scratch,” he says. “I used low-cost RF transceivers to implement the protocol. It is simple and provides just the core functionality necessary for the application.”

Figure1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Figure 1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Alvarez writes about his project in the February issue of Circuit Cellar. His article concentrates on the project’s TCI/IP communications aspects and explains how they interface.

Here is his article’s overview of how the system functions and its primary hardware components:

Figure 1 shows the system’s block diagram and functional configuration. The smart meter collects the entire house’s power consumption information and sends that data every time it is requested by the gateway. In turn, the smart plugs receive commands from the gateway to turn on/off the household devices attached to them. This happens every time the user turns on/off the controls in the web control panel.

Photo 1: These are the three smart node hardware prototypes: upper left,  smart plug;  upper right, a second smart plug in a breadboard; and at bottom,  the smart meter.

Photo 1: These are the three smart node hardware prototypes: upper left, smart plug; upper right, a second smart plug in a breadboard; and at bottom, the smart meter.

I used the simple wireless protocol (SWP) I developed for this project for all of the home area wireless network’s wireless communications. I used low-cost Hope Microelectronics 433-/868-/915-MHz RFM12B transceivers to implement the smart nodes. (see Photo 1)
The wireless network is configured to work in a star topology. The gateway assumes the role of a central coordinator or master node and the smart devices act as end devices or slave nodes that react to requests sent by the master node.

The gateway/server is implemented in hardware around a Digilent chipKIT Max32 board (see Photo 2). It uses an RFM12B transceiver to connect to the home area wireless network and a Microchip Technology ENC28J60 chip module to connect to the LAN using Ethernet.

As the name implies, the gateway makes it possible to access the home area wireless network over the LAN or even remotely over the Internet. So, the smart devices are easily accessible from a PC, tablet, or smartphone using just a web browser. To achieve this, the gateway implements the SWP for wireless communications and simultaneously uses Microchip Technology’s TCP/IP Stack to work as a web server.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Thus, the Home Energy Gateway generates and serves the control panel web page over HTTP (this page contains the individual controls to turn on/off each smart plug and at the same time shows the power consumption in the house in real-time). It also uses the wireless network to pass control data from the user to the smart plugs and to read power consumption data from the smart meter.

The hardware module includes three main submodules: The chipKIT Max 32 board, the RFM12B wireless transceiver, and the ENC28J60 Ethernet module. The smart meter hardware module has an RFM12B transceiver for wireless communications and uses an 8-bit Microchip Technology PIC16F628A microcontroller as a main processor. The smart plug hardware module shows the smart plugs’ main hardware components and has the same microcontroller and radio transceiver as the smart meter. But the smart plugs also have a Sharp Microelectronics S212S01F solid-state relay to turn on/off the household devices.

On the software side, the gateway firmware is written in C for the Microchip Technology C32 Compiler. The smart meter’s PIC16F628A code is written in C for the Hi-TECH C compiler. The smart plug software is very similar.

Alvarez says DIY home-automation enthusiasts will find his prototype inexpensive and capable. He would like to add several features to the system, including the ability to e-mail notifications and reports to users.

For more details, check out the February issue now available for download by members or single-issue purchase.

A Visit to the World Maker Faire in New York

If you missed the World Maker Faire in New York City, you can pick up Circuit Cellar’s February issue for highlights of the innovative projects and hackers represented there.Veteran electronics DIYer and magazine columnist Jeff Bachiochi is the perfect guide.

“The World Maker Faire is part science fair and part country fair,” Bachiochi says. “Makers are DIYers. The maker movement empowers everyone to build, repair, remake, hack, and adapt all things. The Maker Faire shares the experiences of makers who have been involved in this important process… Social media keeps us in constant contact and can educate, but it can’t replace the feeling you can get from hands-on live interaction with people and the things they have created.

Photo 1: This pole-climbing robot is easy to deploy at a moment’s notice. There is no need for a ladder to get emergency communication antennas up high where they can be most effective.

Photo 1: This pole-climbing robot is easy to deploy at a moment’s notice. There is no need for a ladder to get emergency communication antennas up high where they can be most effective.

“It should be noted that not all Maker Faire exhibitors are directly involved with technology. Some non-technological projects on display included the ‘Art Car’ from Pittsburgh, which is an annual revival of an old clunker turned into a drivable art show on wheels. There was also the life-size ‘Mouse Trap’ game, which was quite the contraption and just plain fun, especially if you grew up playing the original game.”

Bachiochi’s article introduces you to a wide variety of innovators, hackers, and hackerspaces.

“The 721st Mechanized Contest Battalion (MCB) is an amateur radio club from Warren County, NJ, that combines amateur (ham) radio with electronics, engineering, mechanics, building, and making,” Bachiochi says. “The club came to the Maker Faire to demonstrate its Emergency Antenna Platform System (E-APS) robot. The robot, which is designed for First Responder Organizations, will turn any parking lot lamppost into an instant antenna tower (see Photo 1).”

The keen and growing interest in 3-D printing as a design tool was evident at the Maker Faire.

“Working by day as an analog/mixed-signal IC design engineer for Cortina Systems in Canada, Andrew Plumb needed a distraction. In the evenings, Plumb uses a MakerBot 3-D printer to create 3-D designs of plastic, like thousands of others experimenting with 3-D printing,” Bachiochi says. “Plumb was not satisfied with simply printing plastic widgets. In fact, he showed me a few of his projects, which include printing plastic onto paper and cloth (see Photo 2).”

Photo 2: Andrew Plumb showed me some unique ideas he was experimenting with using one of his 3-D printers. By printing the structural frame directly on tissue paper, ultra-light parts are practically ready to fly.

Photo 2: Andrew Plumb showed me some unique ideas he was experimenting with using one of his 3-D printers. By printing the structural frame directly on tissue paper, ultra-light parts are practically ready to fly.

Also in the 3-D arena, Bachiochi encountered some innovative new products.

“It was just a matter of time until someone introduced a personal scanner to create digital files of 3-D objects. The MakerBot Digitizer Desktop 3-D Scanner is the first I’ve seen (see Photo 3),” Bachiochi says. “It uses a laser, a turntable, and a CMOS camera to pick off 3-D points and output a STL file. The scanner will create a 3-D image from an object up to 8″ in height and width. There is no third axis scanning, so you must plan your model’s orientation to achieve the best results. Priced less than most 3-D printers, this will be a hot item for 3-D printing enthusiasts.”

Bachiochi’s article includes a lengthy section about “other interesting stuff” and people at the Maker Faire, including the Public Laboratory for Open Technology and Science (Public Lab), a community that uses inexpensive DIY techniques to investigate environmental concerns.

Photo 3: The MakerBot Digitizer Desktop 3-D Scanner is the first production scanner I’ve seen that will directly provide files compatible with the 3-D printing process. This is a long-awaited addition to MakerBot’s line of 3-D printers. (Photo credit: Spencer Higgins)

Photo 3: The MakerBot Digitizer Desktop 3-D Scanner is the first production scanner I’ve seen that will directly provide files compatible with the 3-D printing process.  (Photo credit: Spencer Higgins)

“For instance, the New York chapter featured two spectrometers, a you-fold-it cardboard version and a near-infrared USB camera-based kit,” Bachiochi says. “This community of educators, technologists, scientists, and community organizers believes they can promote action, intervention, and awareness through a participatory research model in which you can play a part.”

At this family-friendly event, Bachiochi met a family that “creates” together.

“Asheville, NC-based Beatty Robotics is not your average robotics company,” Bachiochi says. “The Beatty team is a family that likes to share fun robotic projects with friends, family, and other roboticists around the world. The team consists of Dad (Robert) and daughters Camille ‘Lunamoth’ and Genevieve ‘Julajay.’ The girls have been mentored in electronics, software programming, and workshop machining. They do some unbelievable work (see Photo 4). Everyone has a hand in designing, building, and programming their fleet of robots. The Hall of Science is home to one of their robots, the Mars Rover.”

There is much more in Bachiochi’s five-page look at the Maker Faire, including resources for finding and participating in a hackerspace community. The February issue including Bachiochi’s articles is available for membership download or single-issue purchase.

Photo 4: Beatty Robotics is a family of makers that produces some incredible models. Young Camille Beatty handles the soldering, but is also well-versed in machining and other areas of expertise.

Photo 4: Beatty Robotics is a family of makers that produces some incredible models. Young Camille Beatty handles the soldering, but is also well-versed in machining and other areas of expertise.