About C. J. Abate

C. J. Abate is Circuit Cellar's Editor in Chief. You can reach him at cabate@circuitcellar.com and @editor_cc.

IR Remote Control Testing (EE Tip #119)

On the Internet you can find them in all shapes and sizes: circuits to test remote controls. Here I describe a simple and cheap method that is not that well-known.

This method is based on the principle that an LED does not only generate light when you apply a voltage to it, but also works in the opposite direction to generate a voltage when light falls on it. Within constraints it can therefore be used as an alternative for a proper phototransistor or photodiode. The major advantage is that you will usually have an LED around somewhere, which may not be true for a photodiode.

IR remote tester

IR remote tester

This is also true for infrared (IR) diodes and this makes them eminently suitable for testing a remote control. You only need to connect a voltmeter to the IR diode and the remote control tester is finished. Set the multimeter so it measures DC voltage and turn it on. Hold the remote control close to the IR diode and push any button. If the remote control is working then the voltage shown on the display will quickly rise. When you release the button the voltage will drop again.

However, don’t expect a very high voltage from the IR diode! The voltage generated by the diode will only be about 300 mV, but this is sufficient to show whether the remote control is working or not. There are quite a few other objects that emit IR radiation. So, first note the voltage indicated by the voltmeter before pushing any of the buttons on the remote control and use this as a reference value. Also, don’t do this test in a well lit room or a room with the sun shining in, because there is the chance that there is too much IR radiation present.

To quickly reduce the diode voltage to zero before doing the next measurement you can short-circuit the pins of the diode briefly. This will not damage the diode.—Tom van Steenkiste, Elektor, 11/2010

Want tips about testing power supplies? We’ve got you covered! EE Tip #112 will help you determine the stability of your lab or bench-top supply!

Arduino-Based DIY Voltage Booster (EE Tip #117)

If your project needs a higher voltage rail than is already available in the circuit, you can use an off-the-shelf step-up device. But when you want a variable output voltage, it’s less easy to find a ready-made IC. However, it’s not complicated to build such a circuit yourself, especially if you have a microcontroller board that’s as easy to program as an Arduino. And this also lets you experiment with the circuit so you can get a better understanding of how it works.

Source: Elektor, April 2010

Source: Elektor, April 2010

No surprises in the circuit—a largely conventional boost converter. The MOSFET is driven by a pulse width modulated (PWM) signal from the microcontroller, and the output voltage is measured by one of the microcontroller’s analog inputs. The driver adjusts the PWM signal according to the difference between the output voltage measured and the voltage wanted.

We don’t have enough space here to go into details about how this circuit works, but it’s worth mentioning a few points of special interest.

The small capacitor across the diode improves the efficiency of the circuit. The load is represented by R3. The components used make it possible to supply over 1 A (current limited by the MSS1260T 683MLB inductor from Coilcraft), but maximum efficiency (89%) is at around 95 mA (at an output voltage of 10 V). To avoid damaging the controller’s analog input (≤5 V), the output voltage may not exceed 24 V. For higher voltages, the values of resistors R1 and R2 would need to be changed.

The MOSFET is driven by the microcontroller, which is nothing but a little Arduino board. The Arduino’s default PWM signal frequency is around 500 Hz—too low for this application, which needs a frequency at least 100 times higher. So we can’t use the PWM functions offered by Arduino. But that’s no problem, as the Arduino can also be programmed in assembler, allowing a maximum frequency of 62.5 kHz (the microcontroller runs at 16 MHz). To sample the output voltage, a frequency of 100 Hz is acceptable, which means we can use Arduino’s standard timers and analog functions. The Arduino serial port is very handy: we can use it for sending the output voltage set point (5–24 V) and for collecting certain information about the operation. Thanks to the Arduino environment, it only took about half an hour to program. Software is available. — Clemens Valens (Elektor, April 2010)

PCB Design Guidelines (EE Tips #113)

Designing a matching printed circuit board (PCB) can be a challenge for many electronics enthusiasts. To help ease the process, Circuit Cellar and Elektor editors compiled a list of tips for laying out components, routing, and more.PCB1

  • When compactness is not a major consideration and the boards will be assembled by hand, through-hole components are the better choice. In this case you can use the pins of these components as “vias.”
  • On the other hand, surface-mount components can save a whole load of drilling on self-made PCBs. They make it simpler to achieve objectives such as minimum length for traces , minimal area inside trace loops, etc.
  • The orientation of components should consider not only simplicity of assembly but also the need to test the circuitry afterward. This is the time to remember the need for test points!
  • The place for switches, press buttons, plug-in connectors, LEDs and other user-interface components is outside the enclosure. Anything requiring subsequent access should be on the front panel of the case.
  • Components that require assembling with the right polarity should all have the same orientation.
  • Manual routing is preferable to using the autorouter. The latter has its uses nevertheless for discovering bottlenecks and other critical points.
  • When routing, never even think about giving up! Many PCBs appear “unroutable” at the outset, yet after a while it turns out you have plenty of space to spare.
  • If you’re not satisfied with your efforts, it’s better to go back a step or two rather than just muddle onwards.
  • Complete the routing for each of the functional groups of the circuit first. Link the groups together only after you have finished this stage.
  • Short traces are better than long ones. High impedance connections are more sensitive to interference and for this reason require to be kept as short as possible.
  • Where traces form a loop, their surface area should be kept to an absolute minimum.
  • Decoupling capacitors must be located as close as possible to the switching element that needs to be decoupled.
  • Traces carrying signals should be routed early on (first the short ones, then the long ones). Except, that is, when the power supply traces are particularly critical.
  • Bus lines should be routed alongside one another.
  • Separate analog circuitry from digital whenever possible.PCB2
  • On multilayer boards arrange traces carrying signals so that one of the layers hosts the vertical traces and another one accommodates the horizontal ones.
  • If possible, reserve one layer or side exclusively for a continuous ground plane. Only in exceptional situations, e.g. with high speed op-amps, is this undesirable.
  • Keep traces carrying heavy currents well away from sensitive pickups, sensors and so on.
  • Beginners should take special care with mains and high voltages!
  • Ground and earth traces require exactly the same consideration as the power supply traces. Electromagnetic interference can be minimized by keeping the power and ground traces parallel (or better still arranged over each other on either side of a double-sided board).
  • Bends should be no more than 45°. Sharp angles between the traces and the pads are also to be avoided.
  • Observe PCB manufacturers’ requirements without exception in order to avoid unpleasant surprises later.
  • If you are using software for checking conformity to specifications, carry out these checks regularly at each design phase.
  • A border of 0.12″ (approximately 3 mm) around the edge of the PCB should be kept entirely clear of components.
  • If components are to be inserted by machine you must provide at least three location marks.
  • Don’t forget the holes for fixing screws or pillars!
  • Don’t skimp on text markings on the PCB: indicate polarity, voltages, on-board functions, part designation, design date, version number…
  • Check not just twice but three times that all components will actually fit the PCB!
  • Leave time at the end of the process for tidying up and optimizing.

Good luck!

Testing Power Supplies (EE Tip #112)

How can you determine the stability of your lab or bench-top supply? You can get a good impression of the stability of a power supply under various conditions by loading the output dynamically. This can be implemented using just a handful of components.

Power supply testing

Power supply testing

Apart from obvious factors such as output voltage and current, noise, hum and output resistance, it is also important that a power supply has a good regulation under varying load conditions. A standard test for this uses a resistor array across the output that can be switched between two values. Manufacturers typically use resistor values that correspond to 10% and 90% of the rated power output of the supply.

The switching frequency between the values is normally several tens of hertz (e.g. 40 Hz). The behavior of the output can then be inspected with an oscilloscope, from which you can deduce how stable the power supply is. At the rising edge of the square wave you will usually find an overshoot, which is caused by the way the regulator functions, the inductance of the internal and external wiring and any output filter.

This dynamic behavior is normally tested at a single frequency, but the designers in the Elektor Lab have tested numerous lab supplies over the years and it seemed interesting to check what happens at higher switching frequencies. The only items required for this are an ordinary signal generator with a square wave output and the circuit shown in Figure 1.Fig1-pwrsupply

You can then take measurements up to several megahertz, which should give you a really good insight for which applications the power supply is suitable. More often than not you will come across a resonance frequency at which the supply no longer remains stable and it’s interesting to note at which frequency that occurs.

The circuit really is very simple. The power MOSFET used in the circuit is a type that is rated at 80 V/75 A and has an on-resistance of only 10 mΩ (VGS = 10 V).

The output of the supply is continuously loaded by R2, which has a value such that 1/10th of the maximum output current flows through it (R2 = Vmax/0.1/max). The value of R1 is chosen such that 8/10th of the maximum current flows through it (R1 = Vmax/0.8/max). Together this makes 0.9/max when the MOSFET conducts. You should round the calculated values to the nearest E12 value and make sure that the resistors are able to dissipate the heat generated (using forced cooling, if required).

At larger output currents the MOSFET should also be provided with a small heatsink. The gate of the FET is connected to ground via two 100-Ω resistors, providing a neat 50-Ω impedance to the output of the signal generator. The output voltage of the signal generator should be set to a level between 5 V and 10 V, and you’re ready to test. Start with a low switching frequency and slowly increase it, whilst keeping an eye on the square wave on the oscilloscope. And then keep increasing the frequency… Who knows what surprises you may come across? Bear in mind though that the editorial team can’t be held responsible for any damage that may occur to the tested power supply. Use this circuit at your own risk!

— Harry Baggen and Ton Giesberts (Elektor, February 210)

Electronics Grounding (EE Tip #107)

Whether you are professional electrical engineer or part-time DIYer, before you start your next project, read through this primer on grounding. This short survey covers one of the most fundamental topics in electronics: grounding.

Electronics Signal Ground or Circuit Common

Signal ground is the current return to the power supply. Current leaves the power supply, passes through the various electronic components, and then returns to the supply. The typical symbol for signal ground is shown in Figure 1.EE107-F1-2

 Chassis Ground or Earth Ground

Chassis ground is an electrical safety requirement to prevent an electrical or electronic device’s chassis from delivering an electrical shock. A long copper rod is driven into the ground outside of the building, and a wire connects the metal chassis to the rod which is at the approximate 0 V potential of the earth. The symbol for earth ground is shown in Figure 2.

Ground Details

Consider the following two details about ground. First, ground is not exactly 0 V. And second, two physically different ground points will not be at the same voltage potential.

Ground Loop

By definition, current will flow in an electrical conductor connected to a difference in voltage potential between two points. Because two physically different ground points are not at the same potential, current will flow through an electrical conductor connected between those two points. This is a ground loop.

Notice this current flowing between these two different ground points is not related to or correlated to any electronic data or message signal. This is noise or garbage that will interfere and distort any information contained in the electronic system.

Note: While “noise” can be added to systems on occasion, it is specifically controlled and the exact quantity is regulated.


Given: A ground loop producing 610 μV of ground noise. It’s a very small quantity. You have a 16-bit A/D converter with a 0- to 10-V input. The smallest voltage it can resolve is:

= 10 V/16 exp 2

= 10 V/65,536

= 152.5ìV

Note that the ground loop noise is four times greater than the actual data, so that A/D converter loses two bits of resolution, and it is now a 14-bit converter.

Connect with Single-Ended/Unbalanced Amps

In Figure 3 the two grounds exist at different potentials, so some current will flow between the grounds. EE107-F3

This ground current has nothing to do with any signals being amplified, and it is noise decreasing the accuracy of the system. Figure 4 is a complete schematic.EE107-F4

Connect with Transformers

When connecting with transformers, keep the following in mind:

  • There is no ground connection, so there can be no Ground Loop.
  • Common-mode rejection of RF interference.
  • Signals are AC coupled, so of limited use for circuits with DC data such as accelerator focus and bend magnets (see Figure 5).EE107-F5

Connect with Differential Amps

Refer to Figure 6 for connecting two systems with differential amplifiers.

  • There is no ground connection, so there can be no Ground Loop.
  • Common-mode rejection of RF interference (see Figure 7).
  • Signals are DC coupled, so this is the perfect solution for circuits with DC data.EE107-F6EE107-F7

—Dennis Hoffman

Note: This article first appeared in audioXpress  (June 2011). It is from a class that Dennis Hoffman teaches at the SLAC National Accelerator Laboratory (Menlo Park, CA). Like Circuit Cellar, audioXpress is Elektor International Media Publication.