Processor Empowers Voice-Controlled Devices

To address the convergence of immersive sensory experiences fueled by voice, video and audio demands, NXP Semiconductors has launched the i.MX 8M family of applications processors. The processors combine robust media capabilities on one chip. Voice commands are expected to dominate 50% of all searches in the next two years, increasingly thinner TVs are driving the popularity of sound bars for home automation, and consumers are embracing the IoT for creating more convenient richer sensory-driven experiences.

The NXP i.MX 8M processors address designers’ requirements for one platform that combines A/V and machine learning to create connected products that can be controlled via voice command. The chips provide the process technology and edge computing needs to manage and reduce the command and question response time of smart connected devices. The i.MX 8MF is suited for a wide range of residential IoT and device control applications including everything.from smart TVs, television subscription services, sound bars and other smart speakers, to streaming media players and DVR/PVR. The processor family is also ideal for managing lighting, thermostats, door locks, home security, smart sprinklers, other systems and devices for a more intuitive and responsive home environment.

NXP’s i.MX 8M family’s features that include:

  • Video and audio capabilities with full 4K Ultra HD resolution, High Dynamic Range (HDR) and the highest levels of pro-audio fidelity
  • Performance and versatility with up to four 1.5 GHz ARM Cortex-A53 cores, flexible memory options, and high-speed interfaces for flexible connectivity
  • Advanced Human Machine Interface (HMI) featuring dual displays, vision procession unit (VPU), and an enriched user experience
  • Scalability and pin-and-power compatibility

NXP Semiconductors | www.nxp.com/iMX8M

Bluetooth 5-Compliant ICs Boast -105 dBm Sensitivity

Toshiba Electronic Devices & Storage has added two new devices to its lineup of ICs that are compliant with the Bluetooth low energy standard. The new TC35680FSG (featuring built-in flash memory) and TC35681FSG are well-suited to applications requiring long-range communication, including beacon tags, IoT devices and industrial equipment. Sample shipments will begin later this month.

The new communication ICs support the full spectrum of data rates required for the high-speed features—2M PHY and Coded PHY (500 kbps and 125 kbps)—found in the Bluetooth 5.0 standard. The new devices also deliver an industry-leading receiver sensitivity level of -105 dBm (at125k bps ) and a built-in high efficiency power amplifier in the transmission block that provides up to +8 dBm transmission power.

Bluetooth technology continues to evolve to meet wireless connectivity needs, and recent enhancements to the standard have been designed to increase Bluetooth’s functionality with the IoT. By adding Bluetooth 5.0-compliant ICs to its extensive lineup, Toshiba helps companies integrate Bluetooth low energy products into IoT devices and addresses the growing demand for high-throughput, long-range communications.

Based on an ARM Cortex-M0 processor, the new ICs incorporate a 256 KB Mask ROM to support the Bluetooth baseband process, and 144 KB of RAM for processing Bluetooth baseband, stack and data. Toshiba’s TC35680FSG and TC35681FSG also feature 18-port GPIOs as interfaces, which can be set to 2 channels each for SPIs, I2C, and UART. This allows for the structuring of systems that connect to various peripheral devices. These GPIOs can be set for a wakeup function, 4-channel PWM, 5-channel AD converter interfaces, an external amplifier control interface for long-range communication and more.

The TC35680FSG includes 128 KB of flash memory for storing user programs and various data in stand-alone operations, making it well-suited to a wide range of applications and removing the need for external non-volatile memory. This also lowers the part count, which reduces both the cost and mounting area.

The TC35681FSG, which does not include a built-in flash memory, operates in conjunction with an external non-volatile memory or host processor. A wide operating range of -40° to +125°C makes it suitable for applications exposed to high temperatures.

Toshiba Electronic Devices & Storage | www.toshiba.semicon-storage.com

Chipsets Provide Low Power LoRa Solutions

Semtech has announced its next generation LoRa devices and wireless radio frequency (RF) technology (LoRa Technology) chipsets enabling innovative LPWAN use cases for consumers with its advanced technology. Addressing the need for cost-effective and reliable sensor-to-cloud connectivity in any type of RF environment, the new features and capabilities will significantly improve the performance and capability of IoT sensor applications that demand ultra-low power, small form factor and long range wireless connectivity with a shortened product development cycle.

The next generation LoRa radios extends Semtech’s industry leading link budget by 20% with a 50% reduction in receiver current (4.5 mA) and a high power +22 dBm option. This extends battery life of LoRa-based sensors up to 30%, which reduces the frequency of battery replacement. The extended connectivity range, with the ability to reach deep indoor and outdoor sensor locations, will create new markets as different types of verticals integrate LoRa Technology in their IoT applications including healthcare and pharmaceuticals, media and advertising, logistics/shipping and asset tracking.

The new platform has a command interface that simplifies radio configuration and shortens the development cycle, needing only 10 lines of code to transmit or receive a packet, which will allow users to focus on applications. The small footprint, 45% less than the current generation, is highly configurable to meet different application requirements utilizing the global LoRaWAN open standard. The chipsets also supports FSK modulation to allow compatibility with legacy protocols that are migrating to the LoRaWAN open protocol for all the performance benefits LoRa Technology provides.

Three new devices, SX1262 (+22dBm), SX1261 (+15dBm) and SX1268 (+22dBm, China frequency bands) are currently sampling to lead customers and partners and will be available in full production in late Q1 2018. Development kits for various regions and associated software will also be available at that time.

LoRa Technology New Features:

  • 50% less power in receive mode
  • 20% more extended range
  • +22 dBm transmit power
  • A 45% reduction in size: 4mm by 4mm
  • Global continuous frequency coverage: 150-960MHz
  • Simplified user interface with implementation of commands
  • New spreading factor of SF5 to support dense networks
  • Protocol compatible with existing deployed LoRaWAN networks

 

Semtech | www.semtech.com/iot

Express Logic IoT Platform Gets Thread Certification

Express Logic has announced that its Industrial Grade X-Ware IoT Platform is an official Thread Certified Product, and the only such solution from an independent RTOS provider. Created by the Thread Group, Thread is a reliable, low-power, secure, and scalable mesh networking solution that provides a foundation on which any application layer can run.

The X-Ware IoT Platform, powered by Express Logic’s high-performance ThreadX RTOS and NetX Duo dual IPv4/IPv6 TCP/IP stack, provides industrial-grade implementations of IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN), Constrained Application Protocol (CoAP), and Datagram Transport Layer Security (DTLS).

According to Express Logic, Thread certification provides more than just protocol compliance. Rather than measuring against single reference implementations, Thread testing validates each device’s specification conformance against a blended network comprised of four reference stacks to ensure device interoperability and reduce risk and time to market. Compliance to the Thread certification protocols and standards is administered and regulated by UL a global, independent, safety and certification company with more than a century of expertise in implementing certification solutions and standards.

The X-Ware IoT Platform contains no open source, is high performance, and boasts an extremely small footprint. The X-Ware IoT Platform automatically scales to use only what is needed by the application, making it well suited for the smallest low-power IoT devices. In addition to the performance and size advantages of the X-Ware IoT Platform, ThreadX and NetX Duo have attained the highest level of safety certifications. They include IEC 61508 SIL 4, IEC 62304 Class C, ISO 26262 ASIL D, EN 50128 SW-SIL 4, UL 60730-1 Annex H, CSA E60730-1 Annex H, IEC 60730-1 Annex H, 60335-1 Annex R and IEC 60335-1 Annex R, 1998.

 

Thread certification will also allow developers to confidently leverage the entire X-Ware IoT Platform solution, including the safety-certified FileX, GUIX, and USBX solutions and technologies, knowing it will seamlessly connect to other Thread-certified devices.

Express Logic | www.rtos.com

Thread Group | www.threadgroup.org

Automotive-Grade IoT Gateways

Eurotech has expanded its range of Multi-service IoT Gateways with the launch of the DynaGATE 10-12 and the announcement of the DynaGATE 10-06. Both systems are carrier pre-certified, with an integrated LTE Cat 1 cellular, GPS, Wi-Fi, BLE, E-Mark and SAE/J1455 certifications and a -40 ºC to +85 ºC operating temperature.

The DynaGATE 10-12 is a low-power gateway based on the TI AM335X Cortex-A8 (Sitara) processor family, with 1 GB RAM and 4 GB eMMC. It features a 6 to 36VDC power supply with transient protection and vehicle ignition sense, 2x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 3x noise and surge protected USB ports and 4x isolated digital I/Os. The DynaGATE 10-12 is suitable for on-board applications, with a metal enclosure, high retention connectors and screw-flange terminal blocks.

The connectivity capabilities of the DynaGATE 10-12 include an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, 2x Fast Ethernet ports, and an internal GPS (optionally with Dead Reckoning) for precise geolocation.

DynaGATE 10-06.jpgThe DynaGATE 10-06 (shown) is an IP67, heavy-duty IoT gateway for Automotive applications. It features an internal battery that provides minutes of uninterrupted operation in case of power failure. Based on the NXP i.MX 6UltraLite Cortex-A7 processor, with 512MB RAM and 4GB eMMC, the DynaGATE 10-06 features a 6 to 36V power supply with protections and vehicle ignition sense, 3x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 1x noise and surge protected USB port and 2x protected digital I/O. All these interfaces are available through a rugged AMPSEAL connector.

The DynaGATE 10-06 connectivity capabilities range from an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, to a dedicated GPS with optional Dead Reckoning and 2x Fast Ethernet ports on rugged M12 connectors.

In addition, the DynaGATE 10-12 and DynaGATE 10-06 connectivity capabilities can be expanded through the ReliaCELL 10-20 family, that includes several 2G/3G/LTE global, rugged cellular modules certified by leading carriers. The DynaGATE 10-12 is also expandable with Eurotech ReliaLORA 10-12, a LoRa LPWAN Gateway unit, and the ReliaIO 10-12, a DAQ unit that provides analog inputs, more digital I/O interfaces and other functionalities.

The DynaGATE 10-12 and the DynaGATE 10-06 come with a genuine Oracle Java SE Embedded 8 Virtual Machine and Everyware Software Framework (ESF), a commercial, enterprise version of Eclipse Kura, the Java/OSGi edge computing platform for IoT gateways. Distributed and supported by Eurotech, ESF adds advanced security, diagnostics, provisioning, remote access and full integration with Everyware Cloud (EC), the Eurotech IoT integration platform (separately available).

Eurotech | www.eurotech.com

Partner Program to Focus on Security

Microchip Technology has also established a Security Design Partner Program for connecting developers with third-party partners that can enhance and expedite secure designs. Along with the program, the company has also released its ATECC608A CryptoAuthentication device, a secure element that allows developers to add hardware-based security to their designs.

Microchip 38318249941_bf38a56692_zAccording to Microchip, the foundation of secured communication is the ability to create, protect and authenticate a device’s unique and trusted identity. By keeping a device’s private keys isolated from the system in a secured area, coupled with its industry-leading cryptography practices, the ATECC608A provides a high level of security that can be used in nearly any type of design. The ATECC608A includes the Federal Information Processing Standard (FIPS)-compliant Random Number Generator (RNG) that generates unique keys that comply with the latest requirements from the National Institute of Standards and Technology (NIST), providing an easier path to a whole-system FIPS certification.

Other features include:

  • Boot validation capabilities for small systems: New commands facilitate the signature validation and digest computation of the host microcontroller firmware for systems with small MCUs, such as an ARM Cortex-M0+ based device, as well as for more robust embedded systems.
  • Trusted authentication for LoRa nodes: The AES-128 engine also makes security deployments for LoRa infrastructures possible by enabling authentication of trusted nodes within a network.
  •  Fast cryptography processing: The hardware-based integrated Elliptical Curve Cryptography (ECC) algorithms create smaller keys and establish a certificate-based root of trust more quickly and securely than other implementation approaches that rely on legacy methods.
  •  Tamper-resistant protections: Anti-tampering techniques protect keys from physical attacks and attempted intrusions after deployment. These techniques allow the system to preserve a secured and trusted identity.
  •  Trusted in-manufacturing provisioning: Companies can use Microchip’s secured manufacturing facilities to safely provision their keys and certificates, eliminating the risk of exposure during manufacturing.

In addition to providing hardware security solutions, customers have access to Microchip’s Security Design Partner Program. These industry-leading companies, including Amazon Web Services (AWS) and Google Cloud Platform, provide complementary cloud-driven security models and infrastructure. Other partners are well-versed in implementing Microchip’s security devices and libraries. Whether designers are looking to secure an Internet of Things (IoT) application or add authentication capabilities for consumables, such as cartridges or accessories, the expertise of the Security Design Partners can reduce both development cost and time to market.

For rapid prototyping of secure solutions, designers can use the new CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) which is an add-on board, compatible with any Microchip Xplained or Xplained Pro evaluation board. The ATECC608A is available for $0.56 each in 10,000 unit quantities. The ATCryptoAuth-XPRO-B add-on development board is available for $10.00 each.

Microchip Technology | www.microchip.com

Power Alternatives for Commercial Drones

330 Power Drones for Web

Solution Options Expand

The amount of power a commercial drone can draw on has a direct impact on how long it can stay flying as well as on what tasks it can perform. But each kind of power source has its tradeoff.

By Jeff Child, Editor-in-Chief

Because extending flight times is a major priority for drone applications, drone system designers are constantly on the lookout for ways to improve the power performance of their products. For smaller, consumer “recreational” style drones, batteries are the obvious power source. But when you get into larger commercial drone designs, there’s a growing set of alternatives. Tethered drone power solutions, solar power technology, fuel cells and advanced battery chemistries are all power alternatives that are on the table for today’s commercial drones.

According to market research firm Drone Industry Insights, the majority of today’s commercial drones use batteries as a power source. As Lithium-polymer (LiPo) and Lithium-ion (Li-ion) batteries have become smaller with lower costs, they’ve been widely adopted for drone use. The advancements in LiPo and Li-ion battery technologies have been driven mainly by the mobile phone industry, according to Drone Industry Insights.

Batteries Still Leading

The market research firm points to infrastructure as the main advantage of batteries. They can be charged anywhere. While Li-Po and Li-Ion are the most common battery technologies for drones, other chemistries are emerging. Lithium Thionyl Chloride batteries (Li-SOCl2) promises a 2x higher energy density per kg compared to LiPo batteries. And Lithium-Air-batteries (Li-air) promise to be almost 7x higher. However, those options aren’t widely available and are expensive. Meanwhile, Lithium-Sulfur-batteries (Li-S) is a possible successor to Li-ion thanks to their higher energy density and the lower costs of using sulfur, according to Drone Industry Insights.

Photo 1 The Graphene Drone FPV Race series LiPo batteries provide lower internal resistance and less voltage sag under load than standard LiPo batteries. As a result, the battery packs stay cooler under extreme conditions

Photo 1
The Graphene Drone FPV Race series LiPo batteries provide lower internal resistance and less voltage sag under load than standard LiPo batteries. As a result, the battery packs stay cooler under extreme conditions

Meanwhile battery vendors continue to roll out new battery products to serve the growing consumer drone market. As an example, in June 2017 battery manufacturer Venom released its new Graphene Drone FPV Race series LiPo batteries. The batteries were engineered for the extreme demands of today’s first person view (FPV) drone racing pilots (Photo 1). The new batteries provide lower internal resistance and less voltage sag under load than standard LiPo batteries. As a result, the battery packs stay cooler under extreme conditions. The Graphene FPV Race series Li-ion batteries are 5C fast charge capable, allowing you to charge up to five times faster. All of the company’s Drone FPV Race packs include its patented UNI 2.0 plug system (Patent no. 8,491,341). The system uses a true Amass XT60 connector that attaches to the included Deans and EC3 adapter.

Chip vendors from the analog IC and microcontroller markets offer resources to help embedded system designers with their drone power systems. Texas Instruments (TI), for example, offers two circuit-based subsystem reference designs that help manufacturers add flight time and extend battery life to quadcopters and other non-military consumer and industrial drones.  …

Read the full article in the January 330 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Stainless Steel Panel PCs Meet Food Industry Needs

Axiomtek has introduced the release of two new IP66/IP69K stainless steel touch panel computers: the 15″ GOT815L-511 and 17″ GOT817L-511 (shown). These Intel Kaby Lake processor-based stainless steel touch panel PCs are especially designed for use in extreme humidity, moist, dusty or wet environments. The highly reliable stainless touch got817-511panel computers adopt a high brightness LCD display with 420 nits (GOT815L-511) and 350 nits (GOT817L-511) brightness to ensure visibility in harsh environments with varying light intensity and come with options for projected capacitive touch or 5-wire flat resistive touchscreen display. The SUS316 stainless steel case can prevent bacteria growth and rust brought on by prolonged usage in moist and wet environments. Furthermore, the flat panel design prevents accumulation of dust and moisture and also makes cleaning easier.

The 15” XGA and 17” SXGA stainless steel panel computers come with rich I/O interfaces with M12-type connectors including two RS-232/422/485 ports, four USB 2.0 ports and one gigabit Ethernet port. They both support one DDR4-2133 SO-DIMM slot with up to 16GB system memory, and one 2.5″ SSD or 2.5″ SATA HDD for storage. Additionally, two PCI Express Mini Card slots are available for wireless network connections. The NEMA 4X Intel Core-based rugged touch panel computers are compatible with Windows 10 and Windows 10 IoT. Mounting ways include suspension and VESA arm.

Axiomtek’s 15-inch GOT815L-511 and 17-inch GOT817L-511 are going to be available in January, 2018.

Axiomtek | www.axiomtek.com

The Quest for Extreme Low Power

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

Over the next couple years, power will clearly rank as a major design challenge for the myriad of edge devices deployed in Internet of Things (IoT) implementations. Such IoT devices are wireless units that need to be always on and connected. At the same time, they need low power consumption, while still being capable of doing the processing power needed to enable machine intelligence. The need for extreme low power in these devices goes beyond the need for long battery life. Instead the hope is for perpetually powered solutions providing uninterrupted operation—and, if possible, without any need for battery power. For their part, microcontroller vendors have been doing a lot in recent years within their own labs to craft extreme low power versions of their MCUs. But the appetite for low power at the IoT edge is practically endless.

Offering a fresh take on the topic, I recently spoke with Paul Washkewicz, vice president and co-founder of Eta Compute about the startup’s extreme low power technology for microcontrollers. The company claims to offer the lowest power MCU intellectual property (IP) available today, with voltages as low as 0.3 V. Eta Compute has developed and implemented a unique low power design methodology that delivers up to a 10x improvement in power efficiency. Its IP and custom designs operate over severe variations in conditions such as temperature, process, voltage and power supply variation. Eta Compute’s approach is a self-timed technology supporting dynamic voltage scaling (DVS) that is insensitive to process variations, inaccurate device models and path delay variations.

The technology has been implemented in a variety of chip functions. Among these are M0+ and M3 ARM cores scaling 0.3 V to 1.2 V operation with additional low voltage logic support functions such as real-time clocking (RTC), Advanced Encryption Standard (AES) and digital signal processing. The technology has also been implemented in an A-D converter sensor interface that consumes less than 5 µW. The company has also crafted an efficient power management device that supports dynamic voltage scaling down to 0.25 V with greater than 80% efficiency.

According to the company, Eta Compute’s technology can be implemented in any standard foundry process with no modifications to the process. This allows ease of adoption of any IP and is immune to delays and changes in process operations. Manufacturing is straightforward with the company’s IP able to port to technology nodes at any foundry. Last fall at ARM TechCon, David Baker, Ph.D. and Fellow at Eta Compute, did a presentation that included a demonstration of a small wireless sensor board that can operate perpetually on a small 1 square inch solar cell.

Attacking the problem from a different direction, another startup, Nikola Labs, is applying its special expertise in antenna design and advanced circuitry to build power harvesting into products ranging from wearables to sensors to battery-extending phone cases. Wi-Fi routers, mobile phones and other connected devices are continually emitting RF waves for communication. According to the company, radio wave power is strongest near the source—but devices transmit in all directions, saturating the surrounding area with stray waves. Nikola Labs’ high-performance, compact antennae capture this stray RF energy. Efficient electronics are then used to convert it into DC electricity that can be used to charge batteries or energize ultra-low power devices.

Nikola’s technology can derive usable energy from a wide band of frequencies, ranging from LTE (910 MHz) to Wi-Fi (2.4 GHz) and beyond (up to 6 GHz). Microwatts of power can be harvested in an active ambient RF area and this can rise to milliwatts for harvesters placed directly on transmitting sources. Nikola Labs has demonstrated energy harvesting from a common source of RF communication waves: an iPhone. Nikola engineers designed a case for iPhone 6 that captures waste RF transmissions, producing up to 30 mW of power to extend battery life by as much as 16% without impacting the phone’s ability to send and receive data.

Whether you address the challenge of extreme low power from the inside out or the outside in—or by advancing battery capabilities—there’s no doubt that the demand for such technologies will only grow within the coming years. With all that in mind, I look forward to covering developments on this topic in Circuit Cellar throughout 2018.

This appears in the January (330) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

HyperBus Interface Incorporated into JEDEC xSPI Standard

Cypress Semiconductor has announced the inclusion of Cypress’ high-bandwidth HyperBus 8-bit serial memory interface into the new eXpanded SPI (xSPI) electrical interface standard from the JEDEC Solid State Technology Association. The xSPI standard defines requirements for the compatibility of high-performance x8 serial interfaces, enabling controller and chipset manufacturers to design a universal memory controller. The inclusion of the HyperBus interface in the JEDEC xSPI standard simplifies designing in HyperBus-based memories and provides more flexibility to system designers to implement instant-on functionality in automotive, industrial and IoT applications.

According to Cypress, the company was the first NOR flash memory supplier to identify the market requirement for a high-speed, 8-bit bus and introduced the HyperBus interface in 2014, ushering in a new class of high-performance NOR flash and RAM solutions that enable instant-on functionality for autonomous driving and industry 4.0 applications. Cypress’ HyperBus-based memories include high-density HyperFlash NOR Flash devices with the bandwidth required for the highest-performance embedded systems and high-speed HyperRAM self-refresh DRAM devices for systems requiring expanded scratchpad memory.

The xSPI standard defines requirements for the compatibility of high-performance x8 serial interfaces, including read and write commands, electrical characteristics, signaling protocols for command and data transfers, and a standard pin-out in a BGA footprint.
hyperbus diagram

The 12-pin Cypress HyperBus interface consists of an 8-pin address/data bus, a differential clock (2 signals), one chip select and a read data strobe for the controller, reducing the overall cost of a system. Memories based on the interface enable faster systems with quicker response times and rich user experiences. The HyperBus interface enables a wide range of high-performance applications, such as automotive instrument clusters, infotainment and navigation systems and factory automation systems.

Cypress Semiconductor | www.cypress.com

Rectifier Controller Has Reverse Protection

Analog Devices has announced the Power by Linear LT8672, an active rectifier controller with reverse input protection to –40 V. Its 3 V to 42 V input voltage capability is well suited for automotive applications which must regulate through cold-crank and stop-start scenarios with minimum input voltages as low as 3.0 V and load dump transients up to 40 V. The LT8672 drives an external N-channel MOSFET, offering a 20mV drop, reducing power dissipation by 90% compared to a Schottky diode, eliminating requirements for a costly heat sink. The ultrafast transient response enables it to meet stringent automotive applications requiring AC input ripple rectification up to 100 kHz. Additionally, its 20 µA quiescent current while operating and 3.5 µA in shutdown are ideal for always-on systems. The combination of the MSOP-10 package and external MOSFET ensures a compact solution footprint.

LT8672The LT8672 offers the combination of 3 V minimum input capability and a 20 mV drop, enabling it to ease the minimum input voltage requirement during cold-crank and stop-start, providing simpler and more efficient circuits. If the input power source fails or is shorted, a very fast turn-off minimizes reverse current transients. Also, a power good pin signals when the external MOSFET is ready to take load current.

The LT8672EMS is packaged in an MSOP-10 package. An industrial temperature version, the LT8672IMS, is tested and guaranteed to operate from a –40°C to 125°C operating junction temperature. The LT8672HMS version is tested and guaranteed to operate from a –40°C to 150°C operating junction temperature.

Summary of Features:

  •     Reverse Input Protection to –40V
  •     Wide Operating Voltage Range: 3V to 42V
  •     Low 20µA Quiescent Current in Operation
  •     Improved Performance Compared to a Schottky Diode:
    •         Reduce Power Dissipation by >90%
    •         Reduce Drop to 20mV
  •     Ultrafast Transient Response
    •         Rectifies 6VP-P Up to 50kHz
    •         Rectifies 2VP-P Up to 100kHz
  •     Low 3.5µA Shutdown Current
  •     Accurate 1.21V Enable Pin Threshold
  •     Available in Small 10-Lead MSOP

Analog Devices | www.analog.com

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

zeta-enlargedAlready a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (1/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (1/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (1/23) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Platform Enables Automated Vehicle Application Development

NXP Semiconductors has announced the availability of the NXP Automated Drive Kit, a software enabled platform for the development and testing of automated vehicle applications. The kit enables carmakers and suppliers to develop, test and deploy autonomous algorithms and applications quickly on an open and flexible platform with an expanding ecosystem of partners.

Taking on automated drive applications requires easy access to multiple hardware and software options. NXP has opened the door to hardware and software partners to foster a flexible development platform that meets the needs of a diverse set of developers. The NXP Automated Drive Kit provides a baseline for level 3 development and will expand to additional autonomy levels as the ecosystem’s performance scales.

The first release of the Automated Drive Kit will include a front vision system based on NXP’s S32V234 processor, allowing customers to deploy their algorithms of choice. The Kit also includes front camera application software APIs and object detection algorithms provided by Neusoft; a leading IT solutions and services provider in China and a strategic advanced driver assistance system (ADAS) and AD partner to NXP. Additionally, the Kit includes sophisticated radar options and GPS positioning technology. Customers choose from various LiDAR options and can add LiDAR Object Processing (LOP) modular software from AutonomouStuff, which provides ground segmentation and object tracking.

The NXP Automated Drive Kit is now available for ordering from AutonomouStuff as a standalone package that can be deployed by the customer in their own vehicle or as an integrated package with an AutonomouStuff Automated Research Development Vehicle.

NXP Semiconductors | www.nxp.com

Starter Kit for R-Car V3M SoC Speeds NCAP Applications

Renesas Electronics has announced the R-Car V3M Starter Kit to simplify and speed up the development of New Car Assessment Program (NCAP) front camera applications, surround view system, and LiDARs. The new starter kit is based on the R-Car V3M image recognition system-on-chip (SoC), delivering a combination of low power consumption and high performance for the growing NCAP front camera market. By combining the R-Car V3M starter kit with supporting software and tools, system developers can easily develop front camera applications, contributing to reduced development efforts and faster time-to-market.

Renesas also announced an enhancement to the R-Car V3M by integrating a new, highly power-efficient hardware accelerator for high-performance convolutional neural networks (CNNs), which enables features such as road detection or object classification that are increasingly used in automotive applications. The R-Car V3M’s innovative hardware accelerator enables CNNs to execute at ultra-low power consumption levels that cannot be reached when CNNs are running on CPUs or GPUs.

The new R-Car V3M Starter Kit, the R-Car V3M SoC, and supporting software and tools including Renesas’ open-source e² studio IDE integrated development environment (IDE), are part of Renesas’ open, innovative, and trusted Renesas autonomy Platform for ADAS and automated driving that delivers total end-to-end solutions scaling from cloud to sensing and vehicle control.

The new starter kit is a ready-to-use kit. In addition to the required interface and tools, the kit provides essential components for ADAS and automated driving development, including 2GB RAM, 4GB eMMC (embedded multi-media controller) onboard memory, Ethernet, display outputs, and interfaces for debugging. The integrated 440-pin expansion port gives full freedom for system manufacturers to develop application-specific expansion boards for a wide range of computing applications, from a simple advanced computer vision development environment to prototyping of multi-camera systems for applications such as surround view. This board flexibility reduces the time needed for hardware development in addition to maintaining a high degree of software portability and reusability.

The R-Car V3M Starter Kit is supported by a Linux Board Support Package (BSP), which is available through elinux.org. Further commercial operating systems will be made available from next year onwards. Codeplay will enable OpenCL and SYCL on the starter kit in Q1 2018. Further tools, sample code and application notes for computer vision and image processing will be provided throughout 2018. Renesas enables several tools on the R-Car V3M Starter Kit including Renesas e² studio toolchain and tools for debugging, which ease the development burden and enable faster time-to-market.

In addition to the R-Car V3M Starter Kit, Renesas has enabled ultra-low power consumption for CNNs, which achieve image recognition and image classification, on the R-Car V3M SoC. The R-Car V3M allows the implementation of high-performance, low power consumption CNN networks in NCAP cameras that cannot be realized with traditional high power consuming CPU or GPU architectures. Renesas complements the IMP-X5, a subsystem for computer vision processing that is composed of an image processor and the programmable CV engine, with a new, innovative CNN hardware accelerator developed in house, that allows the implementation of high-performance CNNs at ultra-low low power. With this new IP, Renesas enables system developers to choose between the IMP-X5 or the new hardware accelerator to deploy CNNs. This heterogeneous approach allows system developers to choose the most efficient architecture, depending on required programming flexibility, performance and power consumption.

The Renesas R-Car V3M is available now. The R-Car V3M Starter Kit with a Linux BSP will be available in Q1 2018 initially in limited quantities. A complete offering with an extended software solution is scheduled for Q3 2018.

Renesas Electronics | www.renesas.com

Software Tool Aids STM32 MCU Programming

STMicroelectronics offers a new software tool, STM32CubeProgrammer, the provides device-programming and firmware upgrades for STM32 microcontrollers in a unified, multi-platform and user-configurable environment. Ready to run on Windows, Linux,or MacOS operating systems, the STM32CubeProgrammer can program the STM32 microcontroller’s on-chip Flash/RAM or external memories using various file formats. Further capabilities include whole-memory or sector erase and programming microcontroller option bytes. Users can also generate encrypted files for secure programming (Secure Firmware Install/Update) to authenticate production and protect intellectual property.

With this tool, users can program STM32 microcontrollers through the device’s SWD (Single-Wire Debug) or JTAG debugging ports, or the bootloader ports (such as UART and USB). Hence the STM32CubeProgrammer brings the individual capabilities of the ST Visual Programmer, DFUse Device Firmware Update tool, Flash Loader, and ST-Link utility together within the STM32Cube ecosystem. ST will extend the STM32CubeProgrammer’s capabilities by adding programming access via microcontroller I2C and CAN ports.

The STM32CubeProgrammer provides many opportunities to customize and configure features, using either the GUI or the command-line interface (CLI). Also, this all-in-one tool can be used in standalone mode or integrated and controlled from a custom application. Programming can be done manually or automated using scripts.

STMicroelectronics | www.st.com