Designing High Performance GUIs

329 Brumby Lead Image for Web

UIs for the Multicore Era

For embedded developers, it’s critical to understand the types of performance problems a typical end-user might encounter and the performance metrics relevant to user
interface (UI) design. Phil examines these and other important UI design challenges.

By Phil Brumby
Mentor, Embedded Systems Division

The widespread proliferation of portable media devices has changed the way we interact with each other on a daily basis. In fact, there is now a generation of users who grew up with some type of touchscreen device. These users no longer see the UI as new or revolutionary, but rather as a standard piece of mobile device functionality. This phenomenon has created a new set of expectations. It means any device with an LCD must offer a fluid and intuitive user experience. It’s also expected that the touchscreen has to be “smartphone-like” whenever the device is powered on. Embedded system developers are now under pressure across multiple markets and device types to replicate the smartphone UI interactive experience.

The importance of getting the UI right is absolutely critical to the success of the device. Underpinning documented UI design methodologies is a need for the device to operate in a way that it will not impinge or be detrimental to the user experience. For developers, it’s necessary to understand the types of performance problems a typical end-user might encounter, and through an understanding of performance metrics employ various analyses to highlight the bottlenecks and performance degradation issues.

A key advantage to system start-up is analyzing selected input events.

A key advantage to system start-up is
analyzing selected input events.

TYPICAL PERFORMANCE ISSUES

To understand how to best analyze performance, it’s important to look at typical performance issues from the end-user’s perspective. In identifying these issues, developers can begin to identify the first data points or metrics needed for feedback on system performance.

Responsiveness: Responsiveness can be thought of as the time it takes for the user to receive feedback from the UI as a result of an input action made. Typically, this consists of a touchscreen input, but also includes hard key presses. Responsiveness is important as the user must feel the device performs within a certain timeframe to avoid the feeling a UI is “laggy” or slow to respond. Delays in updating the UI in response to input can result in frustration and mistakes made by the user.

Animation smoothness: Animation smoothness relates to the visible motion or change in appearance of elements displayed within the UI. As an element transitions from one point in 3D space to another, does it do so in a smooth manner that is pleasing to the eye? Animation smoothness is important because if the user perceives jagged or staggered motion in a transition, it will degrade the overall interactive experience.   …

Read the full article in the December 329 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

MCUs Feature Core Independent Peripherals

Microchip has expanded its PIC18 product line to include a new line of 8-bit microcontrollers that combine a Controller Area Network (CAN) bus with an extensive array of Core Independent Peripherals (CIPs). The CIPs increase system capabilities 37088982634_91c19d5d2b_owhile making it easier for designers to create CAN-based applications without the complexity of added software. A key advantage of using a K83 MCU in CAN-based systems is that the CIPs provide deterministic response to real time events, shorten design time and can be easily configured through the MPLAB Code Configurator (MCC) tool. The new family is well suited for applications using CAN in the medical, industrial and automotive markets, such as motorized surgical tables, asset tracking, ultrasound machines, automated conveyors and automotive accessories.

The PIC18 K83 devices contain 15 time-saving CIPs including: Cyclic Redundancy Check (CRC) with memory scan for ensuring the integrity of non-volatile memory; Direct Memory Access (DMA) enabling data transfers between memory and peripherals without CPU involvement; Windowed Watchdog Timer (WWDT) for triggering system resets; 12-bit Analog-to-Digital Converter with Computation (ADC2) for automating analog signal analysis for real-time system response; and Complementary Waveform Generator (CWG) enabling high-efficiency synchronous switching for motor control.

The new products are supported by MPLAB Code Configurator (MCC), a free software plug-in that provides a graphical interface to configure peripherals and functions specific to your application. MCC is incorporated into Microchip’s downloadable MPLAB X Integrated Development Environment (IDE) and the cloud-based MPLAB Xpress IDE. The family is also supported by the Curiosity High Pin Count (HPC) Development Board.

The PIC18F25K83 with 32 kB of Flash memory is available today for sampling and in volume production starting at $1.35 each in 10,000 unit quantities. The PIC18F26K83 with 64 KB of Flash memory is available today for sampling and in volume production starting at $1.44 each in 10,000 unit quantities. Each of these parts is available in 28-pin SPDIP, SOIC, SSOP, UQFN and QFN packages.

Mircochip Technology | www.microchip.com

IoT Tool Suite Supports Bluetooth 5

Rigado has announced its Edge Connectivity Suite with full support for Bluetooth 5. Designed for large-scale commercial IoT deployments, Rigado’s Edge Connectivity solution is comprised of Bluetooth 5 end-device modules and the Vesta IoT Gateway, which includes cloud-based tools for secure deployment and updating.

The Edge Connectivity Suite actively addresses a growing need for low-power wireless within commercial IoT applications like asset tracking, smart lighting and connected retail and hospitality. The company’s Bluetooth 5-enabled solutions support the flexibility, interoperability and security demands of large-scale commercial IoT deployments. Moreover, the suite addresses the market need for Edge Computing at scale, paving a secure and cost-effective road for data from device-to-cloud.

Specifically designed for companies who need to develop, deploy and manage a large number of connected devices and gateways, the Rigado Edge Connectivity Suite provides seamless integration between IoT devices and the Cloud. It includes:

  • BMD-340 angleCertified end device modules – Rigado modules (see photo) save connected product teams six months and $200K+ in design, test and certification. Fully Bluetooth 5 enabled, Rigado modules also feature mesh networking capabilities, ideal for applications like smart lighting, asset tracking, and connected retail.
  • Edge computing gateways – Rigado Vesta gateways manage connectivity to end devices and ensure data reaches public and private cloud services. They also support custom edge applications to process data and offer local device control. Flexible wireless options and customizability mean that companies can optimize their gateway for cost-effective enterprise deployment.
  • Cloud-based tools for secure deployment and updating– Companies require a scalable solution to securely manage updates to devices in the field. With that in mind, every Rigado gateway ships with Rigado’s provisioning and release management system that integrates with existing development tools for secure updating at scale.

Rigado | www.rigado.com

New Consortium to Focus on Industry 4.0

Advantech has announced that it has partnered with Mitsubishi Electric, Omron, NEC, IBM Japan and Oracle Japan to establish the “Edgecross Consortium” to overcome boundaries between companies and industries in order to realize collaboration between factory automation (FA) and IT. The objective is to create new value centered on edge computing. The joint press conference to announce the establishment of the Edgecross Consortium was held on November 6, 2017, in Tokyo, Japan, and the establishment of the consortium is planned for November 29, 2017.

content-image-1510189308969

The Edgecross Consortium will focus on the easy realization of FA and IT collaboration through its open software platform (“Edgecross Software Platform”), which is based on edge computing. By residing on the edge layer, the Edgecross Software Platform facilitates connectivity between factory shop floors and value chains, while enabling the rapid acquisition, analysis, and utilization of data, which are essential to smart manufacturing. In addition, user applications can be easily created and shared on the edge to realize various IoT utilization purposes.

The consortium aims to co-develop the platform specifications for and achieve certification of Edgecross products, in addition to co-marketing promotion and global co-selling for consortium members. Starting from Japan and then globally, you will be able to catch a glimpse of the Edgecross booth display at the SCF 2017 Fair and Smart Factory EXPO 2018. Advantech is organizing the IoT Co-Creation Summit from November 1 to 3, 2018, in Suzhou, China, with more than 2500 attendees from all over the world. The summit will seek to foster the three phases of growth brought about by IoT and to demonstrate the co-creation achievement of IoT WISE-PaaS, EISs, and SRPs.

Advantech | www.advantech.com

Tuesday’s Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

LS-37K-3D8Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (12/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (12/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (12/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

NXP MCU IoT Card with Wi-Fi Supports Amazon FreeRTOS

NXP Semiconductors has introduced the LPC54018 MCU-based IoT module with onboard Wi-Fi and support for newly launched Amazon FreeRTOS on Amazon Web Services (AWS), offering developers universal connections to AWS. Amazon FreeRTOS provides tools for users to quickly and easily deploy an MCU-based connected device and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of the capabilities of the cloud or continue processing data locally with AWS Greengrass.

Amazon FreeRTOS enables security-strong orchestration with the edge-cluster to further leverage low latencies in edge computing configurations, which extends AWS Greengrass core devices’ reach to the nodes. Distributed and autonomous computing architectures become possible through the consistent interface provided between the nodes and their gateways, in both online and offline scenario.

OM40007-LPC54018-IoT-ModuleNXP’s IoT module, co-developed with Embedded Artists and based on the LPC54018 MCU, offers unlimited memory extensibility, a root of trust built on the embedded SRAM physical unclonable functions (PUF) and on-chip cryptographic accelerators. Together, LPC and Amazon FreeRTOS, with easy-to-use software libraries, bring multiple layers of network transport security, simplify cloud on-boarding and over-the-air device management.

NXP enables node-to-cloud AWS connectivity with its LPC54018-based IoT module available on Amazon.com and EmbeddedArtists.com at $35 direct to consumers.

NXP Semiconductors | www.nxp.com

Microchip PIC32MZEF MCUs Support Amazon FreeRTOS

Microchip Technology has expanded its collaboration with Amazon Web Services (AWS) to support cloud-connected embedded systems from the node to the cloud. Supporting Amazon Greengrass, Amazon FreeRTOS and AWS Internet of Things (IoT), Microchip provides all the components, tools, software and support needed to rapidly develop secure cloud-connected systems.

Microchip’s PIC32MZ EF series of microcontrollers now support Amazon FreeRTOS, an operating system that makes compact low-powered edge devices easy to program, deploy, secure and maintain. These high-performance MCUs incorporate industry-leading connectivity options, ample Flash memory, rich peripherals and a robust toolchain which empower embedded designers to rapidly build complex applications. Amazon FreeRTOS includes software libraries which make it easy to securely deploy over-the-air updates as well as the ability to connect devices locally to AWS Greengrass or directly to the cloud, providing a variety of data processing location options.

For systems requiring data collection and analysis at a local level, developers can use Microchip’s SAMA5D2 series of microprocessors with integrated AWS Greengrass software. This will enable systems to run local compute, messaging, data caching and sync capabilities for connected devices in a secure way. This type of execution provides improved event response, conserves bandwidth and enables more cost-effective cloud computing. The SAMA5D2 devices, also available in System-in-Package (SiP) variants, offer full Amazon Greengrass compatibility in a low-power, small form factor MPU targeted at industrial and long-life gateway and concentrator applications. Additionally, the integrated security features and extended temperature range allows these MPUs to be deployed in physically insecure and harsh environments.

In any cloud-connected design, security and ease of use are vital pieces of the puzzle. Microchip’s ATECC608A CryptoAuthentication device enables enhanced system security as well as easy-to-use registration. The secure element provides a unique, trusted and protected identity to each device that can be securely authenticated to protect a brand’s intellectual property and revenue. In addition to enhancing system security, the ATECC608A allows AWS customers to instantly connect to the cloud through the device’s Just-in-Time-Registration (JITR) powered by AWS IoT.

curiosityMicrochip has an extensive toolchain for rapid and reliable development. The Curiosity PIC32MZ EF development board (shown), to kick-start Amazon FreeRTOS-based designs, is a fully integrated 32-bit development platform which also includes two mikroBUS expansion sockets, enabling designers to easily add additional capabilities, such as Wi-Fi with the WINC1510 click board, to their designs. The SAMA5D2 Xplained Ultra board, which can be used for AWS Greengrass designs, is a fast prototyping and evaluation platform for the SAMA5D2 series of MPUs. Additionally, the CryptoAuth Xplained Pro evaluation and development kit is an add-on board for rapid prototyping of secure solutions on AWS IoT and is compatible with any Microchip Xplained or XplainedPro evaluation boards. AWS is also a part of Microchip’s Design Partner Program which provides technical expertise and cost-effective solutions in a timely manner.

PIC32MZ EF MCUs are available starting at $5.48 each in 10,000 unit quantities. The PIC32MZ EF Curiosity board (DM320104) is available for $47.99 each. SAMA5D2 MPUs are available starting at $4.42 each in 10,000 unit quantities. The SAMA5D2 Xplained Ultra board (ATSAMA5D2C-XULT) is available for $150 each. ATECC608A secure elements are available starting at $0.56 each in 10,000 unit quantities. The CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) is available for $10 each.

Microchip Technology | www.microchip.com

STMicro Adds Amazon FreeRTOS to its IoT MCU Tool Suite

STMicroelectronics has announced its collaboration with Amazon Web Services (AWS) on Amazon FreeRTOS, the latest addition to the AWS Internet of Things (IoT) solution. Amazon FreeRTOS provides everything one needs to easily and securely deploy microcontroller-based connected devices and develop an IoT application without having to worry about the complexity of scaling across millions of devices. Once connected, IoT device applications can take advantage of all of the capabilities the cloud has to offer or continue processing data locally with AWS Greengrass.

ST’s collaboration with AWS speeds designers’ efforts to create easily connectable IoT nodes with the combination of ST’s semiconductor building blocks and Amazon FreeRTOS, which extends the leading free and open-source real-time operating-system kernel for embedded devices (FreeRTOS) with the appropriate libraries for local networking, cloud connectivity, security, and remote software updates.

For the STM32, ST’s family of 32-bit Arm Cortex-M microcontrollers, the modular and interoperable IoT development platform spans state-of-the-art semiconductor components, ready-to-use development boards, free software tools and common application examples. At the official release of Amazon FreeRTOS, a version of the OS and libraries were immediately made available to run on the ultra-low-power STM32L4 series of microcontrollers.

The starter kit for Amazon FreeRTOS is ST’s B-L475E-IOT01A Discovery kit for IoT node, a fully integrated development board that exploits low-power communication, multiway sensing, and a raft of features provided by the STM32L4 series microcontroller to enable a wide range of IoT-capable applications. The Discovery kit’s support for Arduino Uno V3 and PMOD connectivity ensures unlimited expansion capabilities with a large choice of specialized add-on boards.

STMicroelectronics | www.st.com

TI Integrates SimpleLink MCU Platform with Amazon FreeRTOS

Texas Instruments (TI) has announced the integration of the new Amazon FreeRTOS into the SimpleLink microcontroller platform. Amazon Web Services (AWS) has worked with TI in the development of an integrated hardware and software solution that enables developers to quickly establish a connection to AWS IoT service out-of-the-box and immediately begin system development.

TI SimpleLink™ MCU platform now supports new Amazon FreeRTOS (PRNewsfoto/Texas Instruments Incorporated)

TI’s SimpleLink Wi-Fi CC3220SF wireless MCU LaunchPad development kit, which now supports Amazon FreeRTOS, offers embedded security features such as secure storage, cloning protection, secure bootloader and networking security. Developers can now take advantage of these security features to help them protect cloud-connected IoT devices from theft of intellectual property (IP) and data or other risks.

TI offers a broad portfolio of building blocks for IoT nodes and gateways spanning wired and wireless connectivity, microcontrollers, processors, sensing technology, power management and analog solutions, along with a community of cloud service providers, such as AWS, to help developers get connected to the cloud faster.

The SimpleLink MCU platform from Texas Instruments is a single development environment that delivers flexible hardware, software and tool options for customers developing Internet of Things (IoT) applications. With a single software architecture, modular development kits and free software tools for every point in the design life cycle, the SimpleLink MCU ecosystem allows 100 percent code reuse across the portfolio of microcontrollers, which supports a wide range of connectivity standards and technologies including RS-485, Bluetooth low energy, Wi-Fi, Sub-1 GHz, 6LoWPAN, Ethernet, RF4CE and proprietary radio frequencies. SimpleLink MCUs help manufacturers easily develop and seamlessly reuse resources to expand their portfolio of connected products.

Texas Instruments | www.ti.com

Partner Program to Focus on Security Design

Microchip Technology has also established a Security Design Partner Program for connecting developers with third-party partners that can enhance and expedite secure designs. Along with the program, the company has also released its ATECC608A CryptoAuthentication device, a secure element that allows developers to add hardware-based security to their designs.

Microchip 38318249941_bf38a56692_zAccording to Microchip, the foundation of secured communication is the ability to create, protect and authenticate a device’s unique and trusted identity. By keeping a device’s private keys isolated from the system in a secured area, coupled with its industry-leading cryptography practices, the ATECC608A provides a high level of security that can be used in nearly any type of design. The ATECC608A includes the Federal Information Processing Standard (FIPS)-compliant Random Number Generator (RNG) that generates unique keys that comply with the latest requirements from the National Institute of Standards and Technology (NIST), providing an easier path to a whole-system FIPS certification.

Other features include:

  • Boot validation capabilities for small systems: New commands facilitate the signature validation and digest computation of the host microcontroller firmware for systems with small MCUs, such as an ARM Cortex-M0+ based device, as well as for more robust embedded systems.
  • Trusted authentication for LoRa nodes: The AES-128 engine also makes security deployments for LoRa infrastructures possible by enabling authentication of trusted nodes within a network.
  •  Fast cryptography processing: The hardware-based integrated Elliptical Curve Cryptography (ECC) algorithms create smaller keys and establish a certificate-based root of trust more quickly and securely than other implementation approaches that rely on legacy methods.
  •  Tamper-resistant protections: Anti-tampering techniques protect keys from physical attacks and attempted intrusions after deployment. These techniques allow the system to preserve a secured and trusted identity.
  •  Trusted in-manufacturing provisioning: Companies can use Microchip’s secured manufacturing facilities to safely provision their keys and certificates, eliminating the risk of exposure during manufacturing.

In addition to providing hardware security solutions, customers have access to Microchip’s Security Design Partner Program. These industry-leading companies, including Amazon Web Services (AWS) and Google Cloud Platform, provide complementary cloud-driven security models and infrastructure. Other partners are well-versed in implementing Microchip’s security devices and libraries. Whether designers are looking to secure an Internet of Things (IoT) application or add authentication capabilities for consumables, such as cartridges or accessories, the expertise of the Security Design Partners can reduce both development cost and time to market.

For rapid prototyping of secure solutions, designers can use the new CryptoAuth Xplained Pro evaluation and development kit (ATCryptoAuth-XPRO-B) which is an add-on board, compatible with any Microchip Xplained or Xplained Pro evaluation board. The ATECC608A is available for $0.56 each in 10,000 unit quantities. The ATCryptoAuth-XPRO-B add-on development board is available for $10.00 each.

Microchip Technology | www.microchip.com

HyperBus Interface Incorporated into JEDEC xSPI Standard

Cypress Semiconductor has announced the inclusion of Cypress’ high-bandwidth HyperBus 8-bit serial memory interface into the new eXpanded SPI (xSPI) electrical interface standard from the JEDEC Solid State Technology Association. The xSPI standard defines requirements for the compatibility of high-performance x8 serial interfaces, enabling controller and chipset manufacturers to design a universal memory controller. The inclusion of the HyperBus interface in the JEDEC xSPI standard simplifies designing in HyperBus-based memories and provides more flexibility to system designers to implement instant-on functionality in automotive, industrial and IoT applications.

According to Cypress, the company was the first NOR flash memory supplier to identify the market requirement for a high-speed, 8-bit bus and introduced the HyperBus interface in 2014, ushering in a new class of high-performance NOR flash and RAM solutions that enable instant-on functionality for autonomous driving and industry 4.0 applications. Cypress’ HyperBus-based memories include high-density HyperFlash NOR Flash devices with the bandwidth required for the highest-performance embedded systems and high-speed HyperRAM self-refresh DRAM devices for systems requiring expanded scratchpad memory.

The xSPI standard defines requirements for the compatibility of high-performance x8 serial interfaces, including read and write commands, electrical characteristics, signaling protocols for command and data transfers, and a standard pin-out in a BGA footprint.
hyperbus diagram

The 12-pin Cypress HyperBus interface consists of an 8-pin address/data bus, a differential clock (2 signals), one chip select and a read data strobe for the controller, reducing the overall cost of a system. Memories based on the interface enable faster systems with quicker response times and rich user experiences. The HyperBus interface enables a wide range of high-performance applications, such as automotive instrument clusters, infotainment and navigation systems and factory automation systems.

Cypress Semiconductor | www.cypress.com

Renesas IoT Sandbox Expands with RX65N MCU Support

Renesas Electronics America has expanded its Renesas IoT Sandbox lineup with the new RX65N Wi-Fi Cloud Connectivity Kit. The RX65N Wi-Fi Cloud Connectivity Kit provides an easy-to-use platform for connecting to the cloud, evaluating IoT solutions and creating IoT applications through cloud services and real-time workflows. The RX65N Wi-Fi Cloud Connectivity Kit integrates the high-performance Renesas RX65N microcontroller (MCU) and Medium One’s Smart Proximity demo with the data intelligence featured in Renesas IoT Sandbox.

RX65N_IoT_Sandbox_Wifi_Kit_UnpackedThe Renesas IoT Sandbox provides a fast path from IoT concept to prototype. It enables personalized data intelligence for system developers working with the Renesas SynergyTM Platform, the Renesas RL78 Family and RX Family of MCUs, and the Renesas RZ Family of microprocessors. The new RX65N Wi-Fi Cloud Connectivity Kit is based on the Renesas RX65N Group of MCUs, which is part of the high-performance RX600 Series of MCUs.

The new kit features the Smart Proximity demo implemented by Medium One. System developers can use workflows to extract data from the Ultrasonic Range Finder Sensor and then transmit distance data and duration length for objects close to the sensor to provide intelligence on end-user engagement with the objects. For instance, when deployed in retail environments, business owners can leverage the data to determine when and for how long shoppers view specific merchandise, providing greater insight on shoppers’ selection behaviors.

Developers can sign up for a Renesas IoT Sandbox account at www.renesas.com/iotsandbox. The data intelligence developer area is ready for immediate prototyping use. The RX65N Wi-Fi Connectivity Kit is available for order at Amazon for $59 per kit.

Renesas Electronics | www.renesas.com

A Year in the Drone Age

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

When you’re trying to keep tabs on any young, fast-growing technology, it’s tempting to say “this is the big year” for that technology. Problem is that odds are the following year could be just as significant. Such is the case with commercial drones. Drone technology fascinates me partly because it represents one of the clearest examples of an application that wouldn’t exist without today’s level of chip integration driven by Moore’s law. That integration has enabled 4k HD video capture, image stabilization, new levels of autonomy and even highly compact supercomputing to fly aboard today’s commercial and consumer drones.

Beyond the technology side, drones make for a rich topic of discussion because of the many safety, privacy and regulatory issues surrounding them. And then there are the wide-open questions on what new applications will drones be used for?

For its part, the Federal Aviation Administration has had its hands full this year regarding drones. In the spring, for example, the FAA completed its fifth and final field evaluation of potential drone detection systems at Dallas/Fort Worth International Airport. The evaluation was the latest in a series of detection system evaluations that began in February 2016 at several airports. For the DFW test, the FAA teamed with Gryphon Sensors as its industry partner. The company’s drone detection technologies include radar, radio frequency and electro-optical systems. The FAA intends to use the information gathered during these kinds of evaluations to craft performance standards for any drone detection technology that may be deployed in or around U.S. airports.

In early summer, the FAA set up a new Aviation Rulemaking Committee tasked to help the agency create standards for remotely identifying and tracking unmanned aircraft during operations. The rulemaking committee will examine what technology is available or needs to be created to identify and track unmanned aircraft in flight.

This year as also saw vivid examples of the transformative role drones are playing. A perfect example was the role drones played in August during the flooding in Texas after Hurricane Harvey. In his keynote speech at this year’s InterDrone show, FAA Administrator Michael Huerta described how drones made an incredible impact. “After the floodwaters had inundated homes, businesses, roadways and industries, a wide variety of agencies sought FAA authorization to fly drones in airspace covered by Temporary Flight Restrictions,” said Huerta. “We recognized that we needed to move fast—faster than we have ever moved before. In most cases, we were able to approve individual operations within minutes of receiving a request.”

Huerta went on to described some of the ways drones were used. A railroad company used drones to survey damage to a rail line that cuts through Houston. Oil and energy companies flew drones to spot damage to their flooded infrastructure. Drones helped a fire department and county emergency management officials check for damage to roads, bridges, underpasses and water treatment plants that could require immediate repair. Meanwhile, cell tower companies flew them to assess damage to their towers and associated ground equipment and insurance companies began assessing damage to neighborhoods. In many of those situations, drones were able to conduct low-level operations more efficiently—and more safely—than could have been done with manned aircraft.

“I don’t think it’s an exaggeration to say that the hurricane response will be looked back upon as a landmark in the evolution of drone usage in this country,” said Huerta. “And I believe the drone industry itself deserves a lot of credit for enabling this to happen. That’s because the pace of innovation in the drone industry is like nothing we have seen before. If people can dream up a new use for drones, they’re transforming it into reality.”

Clearly, it’s been significant year for drone technology. And I’m excited for Circuit Cellar to go deeper with our drone embedded technology coverage in 2018. But I don’t think I’ll dare say that “this was the big year” for drones. I have a feeling it’s just one of many to come.

This appears in the December (329) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Ultra Wide Input Range Power Converters

Aimtec has announced the release of two new series of regulated AC to DC power converters, the AME10-BJZ and AME20-BJZ. These new series will expedite and simplify industrial and commercial product design in a low cost solution. The new regulated 10 W and 20 W AME10-BJZ and AME20-BJZ series are packaged in industry standard packages: 62.0 x 45.0 x 30.0 mm (2.44 x 1.77 x 1.18 inches) and 70.00 x 48.00 x 30.0 mm (2.76 x 1.89 x 1.18 inches) respectively. They meet the IEC/EN 62368-1 standards and are EN55032 class B compliant.

200_sq_ame10-bjz-press-jpg-94f2The internal EMC filtering reduces the need for external filtering components reducing production costs and are well suited for a wide range of applications including electric metering of three phase AC supply, industrial applications as well as commercial equipment applications. The standard package is available with 3.3, 5, 9, 12, 15 and 24 VDC outputs. These series offer over current, over voltage and short circuit protection while accepting an ultra-wide input range of 90-528 VAC or 100-745 VDC at 47-63 Hz input frequency. This series offers a high MTBF of 300,000 hours with an efficiency of up to 83%. The new AME10-BJZ and AME20-BJZ series feature high input/output isolation of 4,000 VAC and operate from a bone chilling -40°C to a blistering +70°C with full power output from -10°C to +55°C.

Aimtec | www.aimtec.com

MCU Enables 3D Graphics in Car Displays

Cypress Semiconductor has announced a new series in its Traveo automotive microcontroller family with more memory to support a hybrid instrument cluster with 3D graphics and up to 6 traditional gauges, as well as a head-up display. The highly integrated, single-chip devices in the S6J32xEK series include an advanced 3D and 2.5D graphics engine and provide scalability with Cypress’ low-pin-count HyperBus memory interface. The series continues Cypress’ expansion of its broad automotive portfolio with differentiated system performance via its MCUs, wireless radios, capacitive-touch solutions, memories and Power Management ICs (PMICs).
Cypress Traveo Automotive MCUs 2017

The Traveo S6J32xEK series integrates up to 4MB of high-density embedded flash, 512 KB RAM and 2 MB of Video RAM, an ARM Cortex-R5 core at 240 MHz performance, a Low-Voltage Differential Signaling (LVDS) video output, a Low-Voltage Transistor-Transistor Logic (LVTTL) video output and a 6x stepper motor control. This combination enables the devices to serve as single-chip solutions to drive two displays. The devices have up to two 12-pin HyperBus memory interfaces that dramatically improve read and write performance of graphical data and other data or code.

A single HyperBus interface can be used to connect to two memories for Firmware Over-The-Air (FOTA) updates, which enable end-users to get software fixes and new features and applications for their vehicles on-the-go. The devices support all in-vehicle networking standards required for instrument clusters, including Controller Area Network-Flexible Data (CAN-FD) and Ethernet AVB. Additionally, the series provides robust security with integrated enhanced secure hardware extension (eSHE) support.

The Traveo S6J32xEK series include 50 channels of 12-bit Analog to Digital Converters (ADC), 12 channels of multi-function serial interfaces and I2S interfaces with an audio to output the complex, high-quality sounds required in today’s instrument clusters. The devices’ support for Ethernet AVB delivers increased bandwidth in multimedia applications and reduced programming time. The S6J32xEK series offers functional safety features to support Automotive Safety Integrity Level (ASIL) B, and the devices feature a wide ambient temperature range of -40˚C to +105˚C. The Traveo family is backed by a comprehensive tools and software ecosystem that simplifies system integration, including AUTOSAR MCAL 4.0.3 support.

The Traveo S6J32xEK series is sampling now and will be in production in the first quarter of 2018. The MCUs are available in a 208-pin and 216-pin thermally enhanced quad flat package (TEQFP).

Cypress Semiconductor | www.cypress.com