Fanless EPIC SBC Handles Extreme Temps

AAEON has launched the EPIC-BT07W2 SBC that supports the EPIC form factor and features an industrial-grade thermal range of -40°C to 85°C. The EPIC-BT07W2 is a fanless solution like the rest of AAEON’s EPIC line, and provides high environmental resilience with its wide-temperature design. The CPU is located at the solder side of the board to facilitate further thermal solutions, and comes with a rugged aluminum heat spreader that provides maximum airflow and temperature control. A heatsink is also available as an accessory.

tio_170919_7nks33PCI-104 architecture expansion enables daughter boards to be stacked atop on the main board, minimizing lateral space and facilitating maximum flexibility, as well as supporting legacy IO. The EPIC-BT07W2 can be seamlessly integrated into pre-existing hardware such as panel screens and mini PCs. It is also ideal for IoT uses, and is designed for minimum maintenance and maximum ruggedness.

Features include:

  • Onboard Intel Atom E3845/ Celeron J1900, N2807 Processor SoC
  • DDR3L 1,333 MHz SoDIMM x1, Up to 8 GB
  • LVDS 24-bit Dual Channel
  • Dual Display Configuration: VGA+ LVDS, VGA + HDMI or HDMI + LVDS
  • SATA 3.0 Gb/s x 1, mSATA/ MiniCard x 1, Micro SD Slot x 1 (E3800 Series Only)
  • USB 3.0 x 1, USB2.0 x 5, RS-232 x 4, RS-232/422/485 x 2 (COM2, COM3)
  • MiniCard x 1, SIM x 1, PCI-104 (Optional)
  • 16-bit Digital IO/LPT, SMBus x 1, I2C (Optional)
  • Audio 2 Ch, 2 W Audio Amp., TPM (Optional), Touch Controller (Optional)
  • 9-24V DC Wide Range or 12 VDC Power Input
  • SoC Processor on Solder Side Design

AAEON | www.aaeon.com

Sensor Node Gets LoRaWAN Certification

Advantech offers its standardized M2.COM IoT LoRaWAN certified sensor node WISE-1510 with integrated ARM Cortex-M4 processor and LoRa transceiver. The module the  is able to provide multi-interfaces for sensors and I/O control such as UART, I2C, SPI, GPIO, PWM and ADC. The WISE-1510 sensor node is well suited for for smart cities, WISE-1510_3D _S20170602171747agriculture, metering, street lighting and environment monitoring. With power consumption optimization and wide area reception, LoRa  sensors or applications with low data rate requirements can achieve years of battery life and kilometers of long distance connection.

WISE-1510 has has received LoRaWAN certification from the LoRa Alliance. Depending on deployment requirements, developers can select to use Public LoRaWAN network services or build a private LoRa system with WISE-3610 LoRa IoT gateway. Advantech’s WISE-3610  is a Qualcomm ARM Cortex A7 based hardware platform with private LoRa ecosystem solution that can connect up to 500 WISE-1510 sensor node devices. Powered by Advantech’s WISE-PaaS IoT Software Platform, WISE-3610 features automatic cloud connection through its WISE-PaaS/WISE Agent service, manages wireless nodes and data via WSN management APIs, and helps customers streamline their IoT data acquisition development through sensor service APIs, and WSN drivers.

Developers can leverage microprocessors on WISE-1510 to build their own applications. WISE-1510 offers unified software—ARM Mbed OS and SDK for easy development with APIs and related documents. Developers can also find extensive resources from Github such as code review, library integration and free core tools. WISE-1510 also offers worldwide certification which allow developers to leverage their IoT devices anywhere. Using Advantech’s WISE-3610 LoRa IoT Gateway, WISE-1510 can be connected to WISE-  PaaS/RMM or  ARM Mbed Cloud service with IoT communication protocols including LWM2M, CoAP, and MQTT. End-to-end integration assists system integrators to overcome complex challenges and helps them build IoT applications quickly and easily.

WISE-1510 features and specifications:

  • ARM Cortex-M4 core processor
  • Compatible support for public LoRaWAN or private LoRa networks
  • Great for low power/wide range applications
  • Multiple I/O interfaces for sensor and control
  • Supports wide temperatures  -40 °C to 85 °C

Advantech | www.advantech.com

Bonus Newsletter Tomorrow: PCB Design

Coming to your inbox tomorrow: October has a 5th Tuesday . That’s means there’s an extra Newsletter this month! The bonus topic is PCB Design. The process of PCB design is always facing new complexities. Rules-based autorouting, chips with higher lead counts and higher speed interconnections are just a few of the challenges forcing PCB design software to keep pace. This newsletter updates you on the latest happenings in this area.

Also, we’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

combo-PCB-FlexAlready a Circuit Cellar Newsletter subscriber? Great!
You’ll get your PCB Design newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (11/7) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (11/14) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (11/21) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards. (11/28) This newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Microcontroller Family Provides 25 Sensing Functions for 25 Cents

Texas Instruments (TI) has unveiled its lowest-cost ultra-low-power MSP430 microcontrollers for sensing applications. Developers can now implement simple sensing solutions through a variety of integrated mixed-signal features in this family of MSP430 value line sensing MCUs, available for as low as US $0.25 in high volumes. Additions to the family include two new entry-level devices and a new TI LaunchPa development kit for quick and easy evaluation. Developers can implement simple sensing functions with TI’s lowest-cost microcontroller family

United_States_QuarterDevelopers now have the flexibility to customize 25 common system-level functions including timers, input/output expanders, system reset controllers, electrically erasable programmable read-only memory (EEPROM) and more, using a library of code examples. A common core architecture, a tools and software ecosystem, and extensive documentation including migration guides make it easy for developers to choose the best MSP430 value line sensing MCU for each of their designs. Designers can scale from the 0.5-kB MSP430FR2000 MCU to the rest of the MSP430 sensing and measurement MCU portfolio for applications that require up to 256 kB of memory, higher performance or more analog peripherals.

The new MSP430FR2000 and MSP430FR2100 MCUs (with 0.5 kB and 1 kB of memory, respectively) and the new development kit join the MSP430 value line sensing family which includes the MSP430FR2111, MSP430FR2311, MSP430FR2033, MSP430FR2433 and MSP430FR4133 microcontroller families and their related development tools and software.

Developers can purchase the value line sensing portfolio through the TI store, priced as low as US$0.29 in 1,000-unit quantities and US $0.25 in higher volumes. Additionally, the new MSP430FR2433 LaunchPad development kit (MSP-EXP430FR2433) is available from the TI store and authorized distributors for US $9.99. Today through Dec. 31, 2017, the TI store is offering the LaunchPad kit for a promotional price of US $4.30.

Texas Instruments | www.ti.com

MCU Delivers Enhanced Security for Connected Devices

Renesas Electronics has announced the expansion of its RX65N/RX651 Group microcontroller lineup that addresses advanced security needs for connected devices operating in industrial automation, building automation, and smart metering systems. The expanded lineup features MCUs with integrated Trusted Secure IP, and enhanced, trusted flash functionality and human-machine interface (HMI) for industrial and network control systems.

2017113-rx65n-rx651-securityThe expansion of devices operating at the edge of the Industrial Internet of Things (IIoT) has increased system manufacturers’ need for secure network connectivity and reliability, including secure on-the-go firmware updates. The expanded RX65N/RX651 devices support these evolving security and reprogrammability needs, offering integrated Trusted Secure IP, enhanced flash protection, and other technology advancements to create a secure and stable integrated solution far above others in the market, as proven by the Cryptographic Algorithm Validation (CAVP) certification. In turn, these security advancements enable seamless flash firmware updates in the field through secure network communications.

The new MCUs expanded with enhanced security features are based on the high-performance RXv2 core and a 40nm process, which provide strong power efficiency for CPU operation at 4.55 Core Mark/MHz. Integrating the Trusted Secure IP into the new MCUs enables system control engineers to realize high root-of-trust levels for device operation through a combination of three new features:

  •    Protect encryption key by Trusted Secure IP
  •    Integration of encryption hardware accelerators including AES, 3DES, SHA, and      TRNG as part of Trusted Secure IP
  •    Protect boot code by area of Flash

The Trusted Secure IP received the CAVP certification, which ensures the customer will use a device with a high security level.

Renesas has optimized the new RX65N/RX651 MCUs for connected industrial environments. The new MCUs offer network connectivity and HMI support that makes it possible to:

  •     Monitor the operating state of machinery from both inside and outside the factory
  •     Exchange data for making changes to production instructions
  •     Reprogram the MCU’s memory to update equipment settings

Design engineers are often asked to integrate small thin-film-transistor (TFT) displays into their IoT edge devices or system control applications. These displays allow users to monitor machine behavior through a modern low-cost HMI solution. The RX65N/RX651 is an ideal solution for controlling these displays as it features an embedded TFT controller and an integrated 2D graphic accelerator to provide advanced graphics features and high-performance applications. Selecting a WQVGA display size allows the large 640 KB of on-chip RAM to be used as display frame buffer, which saves external RAM, ensuring a cost-optimized design.

Compared with other IoT devices, industrial applications are designed for long-term operation, which involves unique and sometimes challenging requirements, such as firmware updates in the field. The new RX65N/RX651 MCUs feature dual bank flash integration supporting both BGO (Back Ground Operation) and the SWAP function, making it easier for system and network control manufacturers to execute in-the-field firmware updates securely and reliably.

Firmware Integration Technology (FIT) is a holistic concept that emphasizes the embedded peripheral function module drivers and portability improvement between the RX65N/RX651 MCUs. The technology aims to lighten the burden of program development and resource management in software development using the entire family of RX MCUs. FIT provides a common application program interface for peripheral drivers and middleware for RX family, based on a solid Board Support Package, which controls the common information for these functions like initial MCU, clock, and board settings. FIT is available for all RX devices and fully integrated into the development environment.

Renesas has expanded its robust RX tool infrastructure to help engineers jump start their development work. The new Envision Kit provides an evaluation environment that allows engineers to easily benchmark MCU performance and start developing their own software. The new RX65N Renesas Starter Kit (RSK) includes a development board with MCU, display, on-chip debugger, trial Renesas C compiler and Integrated Development Environment (IDE), enabling engineers to get their evaluations and development up and running within a matter of minutes. To jumpstart their display designs, RX users can also leverage several ecosystem partner tools, including easy-to-use graphic GUI tools.

The expanded RX65N/RX651 MCUs, Renesas RX65N Starter Kit, and Envision Kit are available now

.Renesas Electronics | www.renesas.com

MCU Series Leverages New ARM Security Architecture

STMicroelectronics supports ARM’s new Platform Security Architecture (PSA) in ST’s STM32H7 high-performing microcontrollers. People and organizations are increasingly dependent on connected electronic devices to manage time, monitor health, handle social interactions, consume or deliver services, maximize productivity, and many other activities. Preventing unauthorized interactions with these devices is essential to protecting identity, personal information, physical assets, and intellectual property. As device manufacturers must always innovate to beat new and inventive hacking exploits, PSA helps them implement state-of-the-art security cost-effectively in small, resource-constrained devices.

en.STM32H7_Support_Arm_Security_T3989S_bigST’s STM32H7 MCU devices integrate hardware-based security features including a True Random-Number Generator (TRNG) and advanced cryptographic processor, which will simplify protecting embedded applications and global IoT systems against attacks like eavesdropping, spoofing, or man-in-the-middle interception. In addition, secure firmware loading facilities help OEMs ensure their products can be programmed safely and securely, even off-site at a contract manufacturer or programming house.

To enable secure loading, security keys and software services already on-board the MCU permit OEMs to provide manufacturing partners with already-encrypted firmware, making intercepting, copying, or tampering with the code impossible. This enables programming and authenticating the device to establish the root-of-trust mechanism needed for the device to be connected to the end-user’s network and remotely updated over the air (OTA) to apply security patches or feature upgrades throughout the lifetime of the device.

A member of the STM32H7 series supporting the PSA, the STM32H753 MCU with ARM’s highest-performing embedded core (Cortex-M7) delivers a record performance of 2020 CoreMark/856 DMIPS running at 400MHz, executing code from embedded Flash memory. Additional innovations and features implemented by ST further boost performance. These include the Chrom-ART Accelerator for fast and efficient graphical user-interfaces, a hardware JPEG codec that allows high-speed image manipulation, highly efficient Direct Memory Access (DMA) controllers, up to 2 MB of on-chip dual-bank Flash memory with read-while-write capability, and the L1 cache allowing full-speed interaction with off-chip memory.

Multiple power domains allow developers to minimize the energy consumed by their applications, while plentiful I/Os, communication interfaces, and audio and analog peripherals can address a wide range of entertainment, remote-monitoring and control applications. The STM32H753 is in production now, priced $8.90 for orders or 10,000 pieces.

STMicroelectronics | www.st.com

8-bit MCUs Embed CAN and Core Independent Peripherals

Microchip has expanded its PIC18 product line to include a new line of 8-bit microcontrollers that combine a Controller Area Network (CAN) bus with an extensive array of Core Independent Peripherals (CIPs). The CIPs increase system capabilities 37088982634_91c19d5d2b_owhile making it easier for designers to create CAN-based applications without the complexity of added software. A key advantage of using a K83 MCU in CAN-based systems is that the CIPs provide deterministic response to real time events, shorten design time and can be easily configured through the MPLAB Code Configurator (MCC) tool. The new family is well suited for applications using CAN in the medical, industrial and automotive markets, such as motorized surgical tables, asset tracking, ultrasound machines, automated conveyors and automotive accessories.

The PIC18 K83 devices contain 15 time-saving CIPs including: Cyclic Redundancy Check (CRC) with memory scan for ensuring the integrity of non-volatile memory; Direct Memory Access (DMA) enabling data transfers between memory and peripherals without CPU involvement; Windowed Watchdog Timer (WWDT) for triggering system resets; 12-bit Analog-to-Digital Converter with Computation (ADC2) for automating analog signal analysis for real-time system response; and Complementary Waveform Generator (CWG) enabling high-efficiency synchronous switching for motor control.

The new products are supported by MPLAB Code Configurator (MCC), a free software plug-in that provides a graphical interface to configure peripherals and functions specific to your application. MCC is incorporated into Microchip’s downloadable MPLAB X Integrated Development Environment (IDE) and the cloud-based MPLAB Xpress IDE. The family is also supported by the Curiosity High Pin Count (HPC) Development Board.

The PIC18F25K83 with 32 kB of Flash memory is available today for sampling and in volume production starting at $1.35 each in 10,000 unit quantities. The PIC18F26K83 with 64 KB of Flash memory is available today for sampling and in volume production starting at $1.44 each in 10,000 unit quantities. Each of these parts is available in 28-pin SPDIP, SOIC, SSOP, UQFN and QFN packages.

Mircochip Technology | www.microchip.com

Mini Sensor Dies Target IoT and Autos

TDK has announced new miniaturized EPCOS MEMS pressure sensor dies. The automotive versions of the C33 series boast dimensions of just 1 mm x 1 mm x 0.4 mm. They are designed for absolute pressures of 1.2 bar to 10 bar and are qualified based on bild-wo-background-en-HighResolutionDataAEC-Q101. The typical operating voltage is 3 V. With a supply voltage of 5 V they offer sensitivities of between 15 mV/bar and 80 mV/bar, depending on the type. The miniaturized pressure sensors are suitable for a temperature range from -40 °C to +135 °C and can even withstand 140 °C for short periods. They also offer a very long-term stability of ± 0.35% FS (full scale).

The C39 type, with its footprint of just 0.65 mm x 0.65 mm is especially suitable for IoT and consumer applications. One noteworthy feature of the C39 is its low insertion height of just 0.24 mm, which makes the low-profile MEMS pressure sensor die ideal for applications in smartphones and wearables, for example, where space requirements are critical. The C39 is designed for an absolute pressure of 1.2 bar and, like the C33 series, offers long-term stability of ± 0.35% FS. All the pressure sensor dies operate on the piezoresistive principle and deliver, via a Wheatstone bridge, an analog signal that is proportional to the applied pressure and the supply voltage.

Further information on the products at www.epcos.com/pressure_sensor_elements

TDK-Lambda | www.us.tdk-lambda.com

ARM-based SoC Targets Net Acceleration

NXP Semiconductors has announced the highest performance member of its Layerscape family, the LX2160A SoC. The LX2160A is specifically designed to enable challenging high-performance network applications, network edge compute, and data center offloads. Trusted and secure execution of virtualized cloud workloads at the edge is driving new distributed computing paradigms.

LX2160AThe LX2160A features sixteen high-performance Arm Cortex-A72 cores running at over 2 GHz in a sub 30 W power envelope, supporting both the 100 Gbit/s Ethernet and PCIe Gen4 interconnect standards. In addition, it provides L2 switching at wire rate and includes acceleration for data compression and 50 Gbit/s IPSec cryptography.

NXP supports and drives the rich ARM ecosystem for virtualization, building on the foundations of open source projects for cloud and network function virtualization including Open Daylight, OpenStack, and OP-NFV. NXP Arm processors incorporate hardware for virtualization technologies such as KVM and Linux containers and hardware acceleration of network virtualization. NXP also supports industry-standard APIs for virtualization, including DPDK, OVS, and Virtio, and standard enterprise Linux distributions, such as Debian and Ubuntu. Silicon samples and a reference board will be available in Q1 2018.

NXP Semiconductors | www.nxp.com

Hop on the Moving Train

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

We work pretty far in advance to get Circuit Cellar produced and in your hands on-time and at the level of quality you expect and deserve. Given that timing, as we go to press on this issue we’re getting into the early days of fall. In my 27 years in the technology magazine business, this part of the year has always included time set aside to finalize next year’s editorial calendar. The process for me over years has run the gamut from elaborate multi-day summer meetings to small one-on-one conversations with a handful of staff. But in every case, the purpose has never been only about choosing the monthly section topics. It’s also a deeper and broader discussion about “directions.” By that I mean the direction embedded systems technologies are going in—and how it’s impacting you our readers. Because these technologies change so rapidly, getting a handle on it is a bit like jumping onto a moving train.

A well thought out editorial calendar helps us plan out and select which article topics are most important—for both staff-written and contributed articles. And because we want to include all of the most insightful, in-depth stories we can, we will continue to include a mix of feature articles beyond the monthly calendar topics. Beyond its role for article planning, a magazine’s editorial calendar also makes a statement on what the magazine’s priorities are in terms of technology, application segments and product areas. In our case, it speaks to the kind of magazine that Circuit Cellar is—and what it isn’t.

An awareness of what types of product areas are critical to today’s developers is important. But because Circuit Cellar is not just a generic product magazine, we’re always looking at how various chips, boards and software solutions fit together in a systems context. This applies to our technology trend features as well as our detailed project-based articles that explore a microcontroller-based design in all its interesting detail. On the other hand, Circuit Cellar isn’t an academic style technical journal that’s divorced from any discussion of commercial products. In contrast, we embrace the commercial world enthusiastically. The deluge of new chip, board and software products often help inspire engineers to take a new direction in their system designs. New products serve as key milestones illustrating where technology is trending and at what rate of change.

Part of the discussion—for 2018 especially—is looking at how the definition of a “system” is changing. Driven by Moore’s Law, chip integration has shifted the level of system functionally at the IC, board and box level. We see an FPGA, SoC or microcontroller of today doing what used to require a whole embedded board. In turn, embedded boards can do what once required a box full of slot-card boards. Meanwhile, the high-speed interconnects between those new “system” blocks constantly have to keep those processing elements fed. The new levels of compute density, functionality and networking available today are opening up new options for embedded applications. Highly integrated FPGAs, comprehensive software development tools, high-speed fabric interconnects and turnkey box-level systems are just a few of the players in this story of embedded system evolution.

Finally, one of the most important new realities in embedded design is the emergence of intelligent systems. Using this term in a fairly broad sense, it’s basically now easier than ever to apply high-levels of embedded intelligence into any device or system. In some cases, this means adding a 32-bit MCU to an application that never used such technology. At the other extreme are full supercomputing-level AI technologies installed in a small drone or a vehicle. Such systems can meet immense throughput and processing requirements in space-constrained applications handling huge amounts of real-time incoming data. And at both those extremes, there’s connectivity to cloud-based computing analytics that exemplifies the cutting edge of the IoT. In fact, the IoT phenomenon is so important and opportunity rich that we plan to hit it from a variety of angles in 2018.

Those are the kinds of technology discussions that informed our creation of Circuit Cellar’s 2018 Ed Cal. Available now on www.circuitcellar.com, the structure of the calendar has been expanded for 2018 to ensure we cover all the critical embedded technology topics important to today’s engineering professional. Technology changes rapidly, so we invite you to hop on this moving train and ride along with us.

This appears in the November (328) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Analog ICs Meet Industrial System Needs

Jeff Lead Image Analog Inustrial

Connectivity, Control and IIoT

Whether it’s connecting with analog sensors or driving actuators, analog ICs play many critical roles in industrial applications. Networked systems add new wrinkles to the industrial analog landscape.

By Jeff Child

While analog ICs are important in a variety of application areas, their place in the industrial market stands out. Industrial applications depend heavily on all kinds of interfacing between real-world analog signals and the digital realm of processing and control. Today’s factory environments are filled with motors to control, sensors to link with and measurements to automate. And as net-connected systems become the norm, analog chip vendors are making advances to serve the new requirements of the Industrial Internet-of-Things (IIoT) and Smart Factories.

It’s noteworthy, for example, that Analog Devices‘ third quarter fiscal year 2017 report this summer cited the “highly diverse and profitable industrial market” as the lead engine of its broad-based year-over-year growth. Taken together, these factors all make industrial applications a significant market for analog IC vendors, and those vendors are keeping pace by rolling out diverse solutions to meet those needs.

Figure 1

Figure 1 This diagram from Texas Instruments illustrates the diverse kinds of analog sub-systems that are common in industrial systems—an industrial drive/control system in this case.

While it’s impossible to generalize about industrial systems, Figure 1 illustrates the diverse kinds of analog sub-systems that are common in industrial systems—industrial drive/control in that case. All throughout 2017, manufacturers of analog ICs have released a rich variety of chips and development solutions to meet a wide range of industrial application needs.

SOLUTIONS FOR PLCs

Programmable Logic Controllers (PLCs) remain a staple in many industrial systems. As communications demands increase and power management gets more difficult, transceiver technologies have evolved to keep up. PLC and IO-Link gateway systems must dissipate large amounts of power depending. That amount of power is often tied to I/O configuration—IO-Link, digital I/O and/or analog I/O. As these PLCs evolve into new Industrial 4.0 smart factories, special attention must be considered to achieve smarter, faster, and lower power solutions. Exemplifying those trends, this summer Maxim Integrated announced the MAX14819, a dual-channel, IO-Link master transceiver.

The architecture of the MAX14819 dissipates 50% less heat compared to other IO-Link Master solutions and is fully compatible in all modes for IO-Link and SIO compliance. It provides robust L+ supply controllers with settable current limiting and reverse voltage/current protection to help ensure robust communications with the lowest power consumption. With just one microcontroller, the integrated framer/UART enables a scalable and cost-effective architecture while enabling very fast cycle times (up to
400 µs) and reducing latency. The MAX14819 is available in a 48-pin (7 mm x 7 mm) TQFN package and operates over a -40°C to +125°C temperature range.  …

Read the full article in the November 328 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Two Controller Families Add eSPI Bus

Microchip Technology has made available its MEC17XX and MEC14XX families of embedded controllers with enhanced Serial Peripheral Interface (eSPI). The eSPI bus is the host interface supported by the latest PC computing chip sets and is required for new, upcoming computing applications. The MEC17XX family is based on an ARM Cortex-M4F core and has advanced hardware-accelerated cryptography algorithms to efficiently support the secure boot of a computer. The family offers several additional features including two UARTS and an extended industrial operating temperature range that make the family ideal for industrial computing. In addition, Microchip’s popular MIPS-based MEC14XX family has been expanded to include functionality for supporting the new eSPI Slave Attached Flash (SAF) feature, which allows the Microchip embedded controller to be 37288858386_29fa55a67f_kdirectly connected to an SPI Flash memory using an on-board master controller.

These new embedded controllers are part of an expanded family of devices that have been an integral part in the computing industry’s transition from LPC to eSPI.  The MEC17XX adds security through cryptography functionality to advance secure boot, a security feature developed to ensure a system boots only from software that is trusted by the manufacturer. Furthermore, the addition of two UARTS and support for industrial temperature is necessary for industrial computing applications.

The latest members of the MEC14XX family add a new level of design functionality for computing engineers by adding SAF, which is an optimal solution for USB Type-C power delivery. The latest MEC1428 devices are pin and register compatible with the MEC140X and MEC141X families, which allows designers to easily add eSPI and additional features and have more flexibility in their designs. Both families retain eSPI Master Attached Flash (MAF) capability. All of Microchip’s computing embedded controllers are supported by a variety of development and debug tools and evaluation boards, plus datasheets and other documentation.

The eSPI interface has numerous benefits including allowing for multiple input/output signals to be configured to support either 3.3 V or 1.8 V, which reduces the system cost by eliminating the need for external voltage translators.  These features allow for seamless migration of intellectual property (IP) across multiple x86 computing platforms including those based on Intel’s Atom processors, Intel’s iCore processors and Ryzen processors from AMD.

The four-part MEC17XX family is available in a variety of WFBGA package options, starting at $2.59 each in 10,000 unit quantities. The family features industrial-qualified parts as well as the option of additional EEPROM memory. The MEC1428 is available today in a variety of package options, starting at $2.16 each in 10,000 unit quantities.

Microchip Technology | www.microchip.com

Microcontrollers Target Smart Water Meters

Texas Instruments has unveiled a new family of MSP430 microcontrollers with an integrated ultrasonic sensing analog front end that enables smart water meters to deliver higher accuracy and lower power consumption. In addition, TI introduced two new reference designs that make it easier to design modules for adding automated meter reading (AMR) capabilities to existing mechanical water meters. The new MCUs and reference designs support the growing demand for more accurate water meters and remote meter reading to enable efficient water resource management, accurate measurement and timely billing.

New ultrasonic MCUs and new reference designs make both electronic and mechanical water meters smarter (PRNewsfoto/Texas Instruments Incorporated)

New ultrasonic MCUs and new reference designs make both electronic and mechanical water meters smarter.

As part of the ultra-low-power MSP430 MCU portfolio for sensing and measurement, the new MSP430FR6047 MCU family lets developers add more intelligence to flow meters by taking advantage of a complete waveform capture feature and analog-to-digital converter (ADC)-based signal processing. This technique enables more accurate measurement than competitive devices, with precision of 25 ps or better, even at flow rates less than 1 liter per hour. In addition, the integrated MSP430FR6047 devices reduce water meter system component count by 50 percent and power consumption by 25 percent, enabling a meter to operate without having to charge the battery for 10 or more years. The new MCUs also integrate a low-energy accelerator module for advanced signal processing, 256 KB of ferroelectric random access memory (FRAM), a LCD driver and a metering test interface.

The MSP430 Ultrasonic Sensing Design Center offers a comprehensive development ecosystem that allows developers to get to market in months. The design center provides tools for quick development and flexibility for customization, including software libraries, a GUI, evaluation modules with metrology and DSP libraries.

TI’s new Low-Power Water Flow Measurement with Inductive Sensing Reference Design is a compact solution for the electronic measurement of mechanical flow meters with low power consumption for longer battery life. Enabled by the single-chip SimpleLink dual-band CC1350 wireless MCU, this reference design also gives designers the ability to add dual-band wireless communications for AMR networks. Designers can take advantage of the reference design’s small footprint to easily retrofit existing mechanical flow meters, enabling water utilities to add AMR capability while avoiding expensive replacement of deployed meters. The CC1350 wireless MCU consumes only 4 µA while measuring water flow rates, enabling longer product life.

A second new reference design is an ultra-low power solution based on the SimpleLink Sub-1 GHz CC1310 wireless MCU. The Low-Power Wireless M-Bus Communications Module Reference Design uses TI’s wireless M-Bus software stack and supports all wireless M-Bus operating modes in the 868-MHz band. This reference design provides best-in-class power consumption and flexibility to support wireless M-Bus deployments across multiple regions.

Texas Instruments | www.ti.com

Telit and Wind River Team up for IIoT Effort

Telit has announced it is collaborating with Wind River, an Intel company, to accelerate Industrial IoT (IIoT) adoption. Through this relationship, Telit and Wind River are reducing the complexities of IoT device management, helping companies quickly and securely realize the full solution benefits of IIoT.

Wind River is using Telit’s IoT platform technology for its device management platform. The latest release of Wind River Helix Device Cloud is making it easier for companies to Wind-River-Helix-Device-Cloud-Image-1_small1capture data on-premise or in the cloud, providing enhanced system analytics and remote device management. By allowing users to aggregate and perform computing tasks, Device Cloud helps perform informed business intelligence to protect investments, utilize infrastructure, improve processes and generate new revenue streams.

Telit’s deviceWISE platform offers a set of connectivity management, device management, data management, edge, cloud and enterprise ready-to-use connectors and services that reduce the risk and time-to-market of connecting ‘things to apps,’ by collecting, managing,and analyzing critical device data.

Telit | www.telit.com

Tuesday’s Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Connect Tech VXG006-AngleAlready a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

October has a 5th Tuesday (10/31) There’s an extra Newsletter this month: PCB Design

Analog & Power. (11/7) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (11/14) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (11/21) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.