Q&A with Arduino-Based Skube Codesigner

The Arduino-based Skube

The Arduino-based Skube

Andrew Spitz is a Copenhagen, Denmark-based sound designer, interaction designer, and programmer. Among his various innovative projects is the Arduino-based Skube music player, which is an innovative design that enables users to find and share music.

Spitz worked on the design with Andrew Nip, Ruben van der Vleuten, and Malthe Borch. Check out the video to see the Skube in action. On his blog SoundPlusDesign.com, Spitz writes: “It is a fully working prototype through the combination of using ArduinoMax/MSP and an XBee wireless network. We access the Last.fm API to populate the Skube with tracks and scrobble, and using their algorithms to find similar music when in Discover mode.”

Skube – A Last.fm & Spotify Radio from Andrew Nip on Vimeo.

The following is an abridged  version of an interview that appears in the December 2012 issue of audioXpress magazine, a sister publication of Circuit Cellar magazine..

SHANNON BECKER: Tell us a little about your background and where you live.

Andrew Spitz: I’m half French, half South African. I grew up in France, but my parents are South African so when I was 17, I moved to South Africa. Last year, I decided to go back to school, and I’m now based in Copenhagen, Denmark where I’m earning a master’s degree at the Copenhagen Institute of Interaction Design (CID).

SHANNON: How did you become interested in sound design? Tell us about some of your initial projects.

Andrew: From the age of 16, I was a skydiving cameraman and I was obsessed with filming. So when it was time to do my undergraduate work, I decided to study film. I went to film school thinking that I would be doing cinematography, but I’m color blind and it turned out to be a bigger problem than I had hoped. At the same time, we had a lecturer in sound design named Jahn Beukes who was incredibly inspiring, and I discovered a passion for sound that has stayed with me.

Shannon: What do your interaction design studies at CIID entail? What do you plan to do with the additional education?

Andrew: CIID is focused on a user-centered approach to design, which involves finding intuitive solutions for products, software, and services using mostly technology as our medium. What this means in reality is that we spend a lot of time playing, hacking, prototyping, and basically building interactive things and experiences of some sort.

I’ve really committed to the shift from sound design to interaction design and it’s now my main focus. That said, I feel like I look at design from the lens of a sound designer as this is my background and what has formed me. Many designers around me are very visual, and I feel like my background gives me not only a different approach to the work but also enables me to see opportunities using sound as the catalyst for interactive experiences. Lots of my recent projects have been set in the intersection among technology, sound, and people.

SHANNON: You have worked as a sound effects recordist and editor, location recordist and sound designer for commercials, feature films, and documentaries. Tell us about some of these experiences?

ANDREW: I love all aspects of sound for different reasons. Because I do a lot of things and don’t focus on one, I end up having more of a general set of skills than going deep with one—this fits my personality very well. By doing different jobs within sound, I was able to have lots of different experiences, which I loved! nLocation recording enabled me to see really interesting things—from blowing up armored vehicles with rocket-propelled grenades (RPGs) to interviewing famous artists and presidents. And, documentaries enabled me to travel to amazing places such as Rwanda, Liberia, Mexico, and Nigeria. As a sound effects recordist on Jock of the Bushvelt, a 3-D animation, I recorded animals such as lions, baboons, and leopards in the South African bush. With Bakgat 2, I spent my time recording and editing rugby sounds to create a sound effects library. This time in my life has been a huge highlight, but I couldn’t see myself doing this forever. I love technology and design, which is why I made the move...

SHANNON: Where did the idea for Skube originate?

Andrew: Skube came out of the Tangible User Interface (TUI) class at CIID where we were tasked to rethink audio in the home context. So understanding how and where people share music was the jumping-off point for creating Skube.

We realized that as we move more toward a digital and online music listening experience, current portable music players are not adapted for this environment. Sharing mSkube Videousic in communal spaces is neither convenient nor easy, especially when we all have such different taste in music.

The result of our exploration was Skube. It is a music player that enables you to discover and share music and facilitates the decision process of picking tracks when in a communal setting.

audioXpress is an Elektor International Media publication.

Diode Bridge Solution (EE Tip #140)

Once I connected a battery up to a DSP in the wrong “direction,” thereby destroying the DSP. That incident drove home the necessity of “suspenders and belt” design.Diode

After the accident, my colleague and I added a diode to the circuit to make it impossible to repeat that mistake. Nowadays, when I teach elementary electronics courses, I generally mention the diode bridge as a way to make it possible to connect up a battery in either “direction” without endangering the electronics to which the battery is to be connected.

My mistake has served as a cautionary tale for many years now.—Shlomo Engelberg, CC25, 2013

Eight-Core 64-bit Processor for Mobile Devices

MediaTek has announced the MT6795, which the company is targeting at the high-end Android 4G smartphones and tablet segment. According to the press release, the eight-core processor also supports 2560 × 1600 resolution displays, FDD/TDD LTE technology, 802.11ac WiFi, Bluetooth, GPS, FM Radio, and 2G and 3G wireless networks.mediatek

The chip also supports video recording and playback at Ultra HD (4K2K) resolution using the H.265, H.264 and VP9 formats, supporting high-speed 1080p video recording at up to 480 frames per second allowing slow-motion playback on screens with 120 Hz refresh. An integrated 16-MP camera image signal processor handles video input and MediaTek’s ClearMotion technology eliminates motion jitter to ensure smooth video playback at 60fps.

The MT6795 uses eight ARM Cortex-A53 processors, based on a 28-nm process that clocks at 2.0 GHz and a Mali-T760 GPU to handle display control. MediaTek also supplies its CorePilot technology, which provides multicore processor performance and thermal control of the chip. The MT6795 also supports dual-channel LPDDR3 memory at 933 MHz.

According to MediaTek, we can expect to see 4G smartphones using MT7695 chips before the end of  2014.

[Via Elektor]

 

Embedded SOM with Linux-Based RTOS

National Instruments has introduced an embedded system-on-module (SOM) development board with integrated Linux-based real-time operating system (RTOS).NIsom

Processing power in the 2” x 3” SOM comes from a Xilinx Zync-7020 all programmable SOC running a dual core ARM Cortex-A9 at 667 MHz. A built-in, low-power Artix-7 FPGA offers 160 single-ended I/Os and Its dedicated processor I/O include Gigabit Ethernet USB 2.0 host, USB 2.0 host/device, SDHC, RS-232, and Tx/Rx. The SOM’s power requirements are typically 3 to 5 W.

The SOM integrates a validated board support package (BSP) and device drivers together with the National Instruments Linux real-time OS. The SOM board is supplied with a full suite of middleware for developing an embedded OS, custom software drivers, and other common software components.

The LabVIEW FPGA graphical development platform eliminates the need for expertise in the design approach using a hardware description language.

[Via Elektor]

 

New GaAs MESFET Chips

BeRex recently began shipping the BCF-series family of GaAs metal–semiconductor field effect transistor (MESFET) chips. According a press release, the family “addresses the need for low phase noise with high gain and power in applications such as single and multistage amplifiers, oscillators, synthesizers, etc. ranging in frequency from DC to 26.5 GHz.”

You can use the MESFET chips for both broadband and narrow-band applications from DC to 26.5 GHz. A typical application requires a high level of Output Third-Order Intercept Point (OIP3) linearity and a low phase noise that cannot be easily achieved with other technologies, BeRex announced.

Seven devices comprise tje BCF-series family. Each device is built utilizing a 0.25-µm gate length and with a gate width of 200, 300, 400, 600, 800, 1,200, or 2,400 µm, depending on gain and power requirements (up to 1 W for the largest 2,400-µm device).

[via BeRex]