Low-Cost 6-W DC-DC converters

XPThe JCE06 and JTE06 series of low-cost compact 6-W DC-DC converters are designed for a range of mobile communications and industrial and transportation applications. The converters are constructed from a plastic industry-standard 24-pin DIP through-hole mounting package. They measure 1.25“ × 0.80“ × 0.4“  (31.75 mm × 20.32 mm × 10.40 mm). The single- and dual-output units achieve a power density of 15 W per inch3 and up to 84% efficiency.

Single-output models are available with 3.3, 5, 12, 15, or 24 VDC outputs. Dual-output models provide ±3.3, ±5, ±12, ±15, or ±24 VDC outputs. The JCE06 accommodates a wide 2:1 input range. The JTE06 series is designed for an ultra-wide 4:1 input range. All models cover the popular nominal input 12-, 24-, or 48-VDC voltages.

Input-to-output isolation is 1,500 VDC across the range. The converters suit a range of operating environments in temperatures from –40°C to 100°C. No additional forced airflow or heatsinking is required, which saves valuable board space and extra cost.

An under-voltage input protection feature shuts down the converter below a set voltage to prevent damage to the converter. All models within both ranges meet EN55022 Class A conducted EMC emissions without any additional components.

Pricing for the single-output JCE06 series starts at $13.85 in 500-unit quantities. Pricing for the JTE06 series starts at $14 in 500-unit quantities.

XP Power, Ltd.
www.xppower.com

Places for the IoT Inside Your Home

It’s estimated that by the year 2020, more than 30 billion devices worldwide will be wirelessly connected to the IoT. While the IoT has massive implications for government and industry, individual electronics DIYers have long recognized how projects that enable wireless communication between everyday devices can solve or avert big problems for homeowners.

February CoverOur February issue focusing on Wireless Communications features two such projects, including  Raul Alvarez Torrico’s Home Energy Gateway, which enables users to remotely monitor energy consumption and control household devices (e.g., lights and appliances).

A Digilent chipKIT Max32-based embedded gateway/web server communicates with a single smart power meter and several smart plugs in a home area wireless network. ”The user sees a web interface containing the controls to turn on/off the smart plugs and sees the monitored power consumption data that comes from the smart meter in real time,” Torrico says.

While energy use is one common priority for homeowners, another is protecting property from hidden dangers such as undetected water leaks. Devlin Gualtieri wanted a water alarm system that could integrate several wireless units signaling a single receiver. But he didn’t want to buy one designed to work with expensive home alarm systems charging monthly fees.

In this issue, Gualtieri writes about his wireless water alarm network, which has simple hardware including a Microchip Technology PIC12F675 microcontroller and water conductance sensors (i.e., interdigital electrodes) made out of copper wire wrapped around perforated board.

It’s an inexpensive and efficient approach that can be expanded. “Multiple interdigital sensors can be wired in parallel at a single alarm,” Gualtieri says. A single alarm unit can monitor multiple water sources (e.g., a hot water tank, a clothes washer, and a home heating system boiler).

Also in this issue, columnist George Novacek begins a series on wireless data links. His first article addresses the basic principles of radio communications that can be used in control systems.

Other issue highlights include advice on extending flash memory life; using C language in FPGA design; detecting capacitor dielectric absorption; a Georgia Tech researcher’s essay on the future of inkjet-printed circuitry; and an overview of the hackerspaces and enterprising designs represented at the World Maker Faire in New York.

Editor’s Note: Circuit Cellar‘s February issue will be available online in mid-to-late January for download by members or single-issue purchase by web shop visitors.

Circuit Protection (EE TIP #116)

Circuit protection is necessary to ensure that a circuit will work reliably for 10 years and beyond. Input power supplies are susceptible to spikes from various sources including lightning, high-power machinery (e.g., generators and motors), or interference from outside sources (e.g., microwaves). The figure below shows one way to provide circuit protection. If a voltage spike is applied at VIN, the metal oxide varistor (MOV) will act at 18 V and the positive temperature coefficient (PTC) fuse will limit the current drawn. A transorb (transient voltage suppressor), which can be thought of as an ultrafast silicon zener diode, can be used in place of the MOV. Also, a capacitor in parallel with the MOV will soak up fast transient spikes—an electrolytic capacitor for low-frequency transient voltages and a small-value ceramic capacitor for high frequency transient voltages.

Figure 1Editor’s Note: This EE Tip was written by Fergus Dixon of Sydney, Australia. Dixon, who has written two articles and an essay for Circuit Cellar, runs Electronic System Design, a website set up to promote easy to use and inexpensive development kits. Click here to read his essay “The Future of Open-Source Hardware for Medical Devices.”

Q&A: Scott Garman, Technical Evangelist

Scott Garman is more than just a Linux software engineer. He is also heavily involved with the Yocto Project, an open-source collaboration that provides tools for the embedded Linux industry. In 2013, Scott helped Intel launch the MinnowBoard, the company’s first open-hardware SBC. —Nan Price, Associate Editor

Scott Garman

Scott Garman

NAN: Describe your current position at Intel. What types of projects have you developed?

SCOTT: I’ve worked at Intel’s Open Source Technology Center for just about four years. I began as an embedded Linux software engineer working on the Yocto Project and within the last year, I moved into a technical evangelism role representing Intel’s involvement with the MinnowBoard.

Before working at Intel, my background was in developing audio products based on embedded Linux for both consumer and industrial markets. I also started my career as a Linux system administrator in academic computing for a particle physics group.

Scott was involved with an Intel MinnowBoard robotics and computer vision demo, which took place at LinuxCon Japan in May 2013.

Scott was involved with an Intel MinnowBoard robotics and computer vision demo, which took place at LinuxCon Japan in May 2013.

I’m definitely a generalist when it comes to working with Linux. I tend to bounce around between things that don’t always get the attention they need, whether it is security, developer training, or community outreach.

More specifically, I’ve developed and maintained parallel computing clusters, created sound-level management systems used at concert stadiums, worked on multi-room home audio media servers and touchscreen control systems, dug into the dark areas of the Autotools and embedded Linux build systems, and developed fun conference demos involving robotics and computer vision. I feel very fortunate to be involved with embedded Linux at this point in history—these are very exciting times!

Scott is shown working on an Intel MinnowBoard demo, which was built around an OWI Robotic Arm.

Scott is shown working on an Intel MinnowBoard demo, which was built around an OWI Robotic Arm.

NAN: Can you tell us a little more about your involvement with the Yocto Project (www.yoctoproject.org)?

SCOTT: The Yocto Project is an effort to reduce the amount of fragmentation in the embedded Linux industry. It is centered on the OpenEmbedded build system, which offers a tremendous amount of flexibility in how you can create embedded Linux distros. It gives you the ability to customize nearly every policy of your embedded Linux system, such as which compiler optimizations you want or which binary package format you need to use. Its killer feature is a layer-based architecture that makes it easy to reuse your code to develop embedded applications that can run on multiple hardware platforms by just swapping out the board support package (BSP) layer and issuing a rebuild command.

New releases of the build system come out twice a year, in April and October.

Here, the OWI Robotic Arm is being assembled.

Here, the OWI Robotic Arm is being assembled.

I’ve maintained various user space recipes (i.e., software components) within OpenEmbedded (e.g., sudo, openssh, etc.). I’ve also made various improvements to our emulation environment, which enables you to run QEMU and test your Linux images without having to install it on hardware.

I created the first version of a security tracking system to monitor Common Vulnerabilities and Exposures (CVE) reports that are relevant to recipes we maintain. I also developed training materials for new developers getting started with the Yocto Project, including a very popular introductory screencast “Getting Started with the Yocto Project—New Developer Screencast Tutorial

NAN: Intel recently introduced the MinnowBoard SBC. Describe the board’s components and uses.

SCOTT: The MinnowBoard is based on Intel’s Queens Bay platform, which pairs a Tunnel Creek Atom CPU (the E640 running at 1 GHz) with the Topcliff Platform controller hub. The board has 1 GB of RAM and includes PCI Express, which powers our SATA disk support and gigabit Ethernet. It’s an SBC that’s well suited for embedded applications that can use that extra CPU and especially I/O performance.

Scott doesn’t have a dedicated workbench or garage. He says he tends to just clear off his desk, lay down some cardboard, and work on things such as the Trippy RGB Waves Kit, which is shown.

Scott doesn’t have a dedicated workbench or garage. He says he tends to just clear off his desk, lay down some cardboard, and work on things such as the Trippy RGB Waves Kit, which is shown.

The MinnowBoard also has the embedded bus standards you’d expect, including GPIO, I2C, SPI, and even CAN (used in automotive applications) support. We have an expansion connector on the board where we route these buses, as well as two lanes of PCI Express for custom high-speed I/O expansion.

There are countless things you can do with MinnowBoard, but I’ve found it is especially well suited for projects where you want to combine embedded hardware with computing applications that benefit from higher performance (e.g., robots that use computer vision, as a central hub for home automation projects, networked video streaming appliances, etc.).

And of course it’s open hardware, which means the schematics, Gerber files, and other design files are available under a Creative Commons license. This makes it attractive for companies that want to customize the board for a commercial product; educational environments, where students can learn how boards like this are designed; or for those who want an open environment to interface their hardware projects.

I created a MinnowBoard embedded Linux board demo involving an OWI Robotic Arm. You can watch a YouTube video to see how it works.

NAN: What compelled Intel to make the MinnowBoard open hardware?

SCOTT: The main motivation for the MinnowBoard was to create an affordable Atom-based development platform for the Yocto Project. We also felt it was a great opportunity to try to release the board’s design as open hardware. It was exciting to be part of this, because the MinnowBoard is the first Atom-based embedded board to be released as open hardware and reach the market in volume.

Open hardware enables our customers to take the design and build on it in ways we couldn’t anticipate. It’s a concept that is gaining traction within Intel, as can be seen with the announcement of Intel’s open-hardware Galileo project.

NAN: What types of personal projects are you working on?

SCOTT: I’ve recently gone on an electronics kit-building binge. Just getting some practice again with my soldering iron with a well-paced project is a meditative and restorative activity for me.

Scott’s Blinky POV Kit is shown. “I don’t know what I’d do without my PanaVise Jr. [vise] and some alligator clips,” he said.

Scott’s Blinky POV Kit is shown. “I don’t know what I’d do without my PanaVise Jr. [vise] and some alligator clips,” he said.

I worked on one project, the Trippy RGB Waves Kit, which includes an RGB LED and is controlled by a microcontroller. It also has an IR sensor that is intended to detect when you wave your hand over it. This can be used to trigger some behavior of the RGB LED (e.g., cycling the colors). Another project, the Blinky POV Kit, is a row of LEDs that can be programmed to create simple text or logos when you wave the device around, using image persistence.

Below is a completed JeeNode v6 Kit Scott built one weekend.

Below is a completed JeeNode v6 Kit Scott built one weekend.

My current project is to add some wireless sensors around my home, including temperature sensors and a homebrew security system to monitor when doors get opened using 915-MHz JeeNodes. The JeeNode is a microcontroller paired with a low-power RF transceiver, which is useful for home-automation projects and sensor networks. Of course the central server for collating and reporting sensor data will be a MinnowBoard.

NAN: Tell us about your involvement in the Portland, OR, open-source developer community.

SCOTT: Portland has an amazing community of open-source developers. There is an especially strong community of web application developers, but more people are hacking on hardware nowadays, too. It’s a very social community and we have multiple nights per week where you can show up at a bar and hack on things with people.

This photo was taken in the Open Source Bridge hacker lounge, where people socialize and collaborate on projects. Here someone brought a brainwave-control game. The players are wearing electroencephalography (EEG) readers, which are strapped to their heads. The goal of the game is to use biofeedback to move the floating ball to your opponent’s side of the board.

This photo was taken in the Open Source Bridge hacker lounge, where people socialize and collaborate on projects. Here someone brought a brainwave-control game. The players are wearing electroencephalography (EEG) readers, which are strapped to their heads. The goal of the game is to use biofeedback to move the floating ball to your opponent’s side of the board.

I’d say it’s a novelty if I wasn’t so used to it already—walking into a bar or coffee shop and joining a cluster of friendly people, all with their laptops open. We have coworking spaces, such as Collective Agency, and hackerspaces, such as BrainSilo and Flux (a hackerspace focused on creating a welcoming space for women).

Take a look at Calagator to catch a glimpse of all the open-source and entrepreneurial activity going on in Portland. There are often multiple events going on every night of the week. Calagator itself is a Ruby on Rails application that was frequently developed at the bar gatherings I referred to earlier. We also have technical conferences ranging from the professional OSCON to the more grassroots and intimate Open Source Bridge.

I would unequivocally state that moving to Portland was one of the best things I did for developing a career working with open-source technologies, and in my case, on open-source projects.

Electromagnetic Compliance Protection (EE TIP #115)

Electromagnetic compatibility (EMC) compliance is one of the last processes before a device may be released to the public. EMC goes hand-in-hand with electromagnetic immunity (EMI), but immunity is only needed for critical devices. With EMC, it is very important to find a good EMC company to deal with. With most circuits, the weak point for EMC is any external leads. By adding a few inexpensive parts, EMC protection can be added and the EMC filtering can be adjusted by changing the values of the parts. In the figure below, the 1 µH inductors act as chokes to block any external voltage spikes above a certain frequency. The 1 nF capacitor also acts as a shock absorber to reduce any sharp voltage spikes. Effectively, this is a second-order filter and the cutoff frequency may be reduced by increasing the inductance and capacitance.

EMC ProtectionEditor’s Note: This EE Tip was written by Fergus Dixon of Sydney, Australia. Dixon, who has written two articles and an essay for Circuit Cellar, runs Electronic System Design, a website set up to promote easy to use and inexpensive development kits. Click here to read his essay “The Future of Open-Source Hardware for Medical Devices.”

High-Accuracy Snow Depth Sensor

MaxbotixMaxBotix Snow Depth Sensors operate in –40Cº to 65Cº temperatures with a 5,000-mm maximum range. The sensors include responsive accurate temperature compensation. They perform well during heavy snowfall conditions and provide continued performance during high-wind conditions.

The sensors feature a 200,000-h mean time before failure (MTBF). Their low-power consumption enables them to operate in battery-based systems for extended periods of time (or solar powered systems indefinitely), which eases maintenance requirements and enables remote installations.

There are six different Snow Depth Sensors available. The sensors are equipped for the following interface controls: Pulse Width, Analog Voltage, and Serial data RS232 (MB7354) or TTL (MB7374).

The Snow Depth Sensors cost $149.99.

MaxBotix, Inc.
www.maxbotix.com

System Safety Assessment

System safety assessment provides a standard, generic method to identify, classify, and mitigate hazards. It is an extension of failure mode effects and criticality analysis and fault-tree analysis that is necessary for embedded controller specification.

System safety assessment was originally called ”system hazard analysis.” The name change was probably due to the system safety assessment’s positive-sounding connotation.

George Novacek (gnovacek@nexicom.net) is a professional engineer with a degree in Cybernetics and Closed-Loop Control. Now retired, he was most recently president of a multinational manufacturer of embedded control systems for aerospace applications. George wrote 26 feature articles for Circuit Cellar between 1999 and 2004.

Columnist George Novacek (gnovacek@nexicom.net), who wrote this article published in Circuit Cellar’s January 2014 issue, is a professional engineer with a degree in Cybernetics and Closed-Loop Control. Now retired, he was most recently president of a multinational manufacturer of embedded control systems for aerospace applications. George wrote 26 feature articles for Circuit Cellar between 1999 and 2004.

I participated in design reviews where failure effect classification (e.g., hazardous, catastrophic, etc.) had to be expunged from our engineering presentations and replaced with something more positive (e.g., “issues“ instead of “problems”), lest we wanted to risk the wrath of buyers and program managers.

System safety assessment is in many ways similar to a failure mode effects and criticality analysis (FMECA) and fault-tree analysis (FTA), which I described in “Failure Mode and Criticality Analysis” (Circuit Cellar 270, 2013). However, with safety assessment, all possible system faults—including human error, electrical and mechanical subsystems’ faults, materials, and even manuals—should be analyzed. The impact of their faults and errors on the system safety must also be considered. The system hazard analysis then becomes a basis for subsystems’ specifications.

Fault Identification

Performing FMECA and FTA on your subsystem ensures all its potential faults become detected and identified. The faults’ signatures can be stored in a nonvolatile memory or communicated to a display console, but you cannot choose how the controller should respond to any one of those faults. You need the system hazard analysis to tell you what corrective action to take. The subsystem may have to revert to manual control, switch to another control channel, or enter a degraded performance mode. If you are not the system designer, you have little or no visibility of the faults’ potential impact on the system safety.
For example, an automobile consists of many subsystems (e.g., propulsion, steering, braking, entertainment, etc.). The propulsion subsystem comprises engine, transmission, fuel delivery, and possibly other subsystems. A part of the engine subsystem may include a full-authority digital engine controller (FADEC).

Do you have an electrical engineering tip you’d like to share? Send it to us here and we may publish it as part of our ongoing EE Tips series.

Engine controllers were originally mainly mechanical devices, but with the arrival of the microprocessor, they have become highly sophisticated electronic controllers. Currently, most engines—including aircraft, marine, automotive, or utility (e.g., portable electrical generator turbines)—are controlled by some sort of a FADEC to achieve best performance and safety. A FADEC monitors the engine performance and controls the fuel flow via servomotor valves or stepper motors in response to the commanded thrust plus numerous operating conditions (e.g., atmospheric and internal pressures, external and internal engine temperatures in several locations, speed, load, etc.).

The safety assessment mostly depends on where and how essentially identical systems are being used. A car’s engine failure, for example, may be nothing more than a nuisance with little safety impact, while an aircraft engine failure could be catastrophic. Conversely, an aircraft nosewheel steer-by-wire can be automatically disconnected upon a fault. And, with a little increase of the pilots’ workload, it may be substituted by differential braking or thrust to control the plane on the ground. A similar failure of an automotive steer-by-wire system could be catastrophic for a car barreling down the freeway at 70 mph.

Analysis

System safety analysis comprises the following steps: identify and classify potential hazards and associated avoidance requirements, translate safety requirements into engineering requirements, design assessment and trade-off support to the ongoing design, assess the design’s relative compliance to requirements and document findings, direct and monitor specialized safety testing, and monitor and review test and field issues for safety trends.

The first step in hazard analysis is to identify and classify all the potential system failures. FMECA and FTA provide the necessary data. Table 1 shows an example and explains how the failure class is determined.

TABLE 1
This table shows the identification and severity classification of all potential system-level failures.
Eliminated Negligible Marginal Critical Catastrophic
No safety impact. Does not significantly reduce system safety. Required actions are within the operator’s capabilities. Reduces the capability of the system or operators to cope with adverse operating conditions. Can cause major illness, injury, or property damage. Significantly reduces the capability of the system or the operator’s ability to cope with adverse conditions to the extent of causing serious or fatal injury to several people. Total loss of system control resulting in equipment loss and/or multiple fatalities.

The next step determines each system-level failure’s frequency occurrence (see Table 2). This data comes from the failure rates calculated in the course of the reliability prediction, which I covered in my two-part article “Product Reliability” (Circuit Cellar 268–269, 2012) and in “Quality and Reliability in Design” (Circuit Cellar 272, 2013).

TABLE 2
Use this information to determine the likelihood of each individual system-level failure.
Frequent Probability of occurrence per operation is equal or greater than 1 × 10–3
Probable Probability of occurrence per operation is less than 1 × 10–3 or greater than 1 × 10–5
Occasional Probability of occurrence per operation is less than 1 × 10–5 or greater than 1 × 10–7
Remote Probability of occurrence per operation is less than 1 × 10–7 or greater than 1 × 10–9
Improbable Probability of occurrence per operation is less than 1 × 10–9

Based on the two tables, the predictive risk assessment matrix for every hazardous situation is created (see Table 3). The matrix is a composite of severity and likelihood and can be subsequently classified as low, medium, serious, or high. It is the system designer’s responsibility to evaluate the potential risk—usually with regard to some regulatory requirements—to specify the maximum hazard levels acceptable for every subsystem. The subsystems’ developers must comply with and satisfy their respective specifications. Electronic controllers in safety-critical applications must present low risk due to their subsystem fault.

TABLE 3
The risk assessment matrix is based on information from Table 1 and Table 2.
Probability / Severity Catastrophic (1) Critical (2) Marginal (3) Negligible (4)
Frequent (A) High High Serious Medium
Probable (B) High High Serious Medium
Occasional (C) High Serious Medium Low
Remote (D) Serious Medium Medium Low
Improbable (E) Medium Medium Medium Low
Eliminated (F) Eliminated

The system safety assessment includes both software and hardware. For aircraft systems, the required risk level determines the development and quality assurance processes as anchored in DO-178 Software Considerations in Airborne Systems and Equipment Certification and DO-254 Design Assurance Guidance for Airborne Electronic Hardware.

Some non-aerospace industries also use these two standards; others may have their own. Figure 1 shows a typical system development process to achieve system safety.
The common automobile power steering is, by design, inherently low risk, as it continues to steer even if the hydraulics fail. Similarly, some aircraft controls continue to be the old-fashioned cables but, like the car steering, with power augmentation. If the power fails, you just need more muscle. This is not the case with the more prevalent drive- or fly-by-wire systems.

FIGURE 1: The actions in this system-development process help ensure system safety.

FIGURE 1: The actions in this system-development process help ensure system safety.

Redundancy

How can the risk be mitigated to at least 109 probability for catastrophic events? The answer is redundancy. A well-designed electronic control channel can achieve about 105 probability of a single fault. That’s it. However, the FTA shows that by ANDing two such processing channels, the resulting failure probability will decrease to 1010, thus mitigating the risk to an acceptable level. An event with 109 probability of occurring is, for many systems, acceptable as just about “never happening,” but there are requirements for 1014 or even lower probability. Increasing redundancy will enable you to satisfy the specification.
Once I saw a controller comprising three independent redundant computers, with each computer also being triple redundant. Increasing safety by redundancy is why there are at least two engines on every commercial passenger carrying aircraft, two pilots, two independent hydraulic systems, two or more redundant controllers, power supplies, and so forth.

Human Engineering

Human engineering, to use military terminology, is not the least important for safety and sometimes not given sufficient attention. MIL-STD-1472F, the US Department of Defense’s Design Criteria Standard: Human Engineering, spells out many requirements and design constraints to make equipment operation and handling safe. This applies to everything, not just electrical devices.

For example, it defines the minimum size of controls if they may be operated with gloves, the maximum weight of equipment to be located above a certain height, the connectors’ location, and so forth. In my view, every engineer should look at this interesting standard.
Non-military equipment that requires some type of certification (e.g., most electrical appliances) is usually fine in terms of human engineering. Although there may not be a specific standard guiding its design in this respect, experienced certificating examiners will point out many shortcomings. But there are more than enough fancy and expensive products on the market, which makes you wonder if the designer ever tried to use the product himself.

By putting a little thought beyond just the functional design, you can make your product attractive, easy to operate, and safe. It may be as simple as asking a few people who are not involved with your design to use the product before you release it to production.

Test Pixel 1

TRACE32 Now Supports Xilinx MicroBlaze 8.50.C

LauterbachThe TRACE32 modular hardware and software supports up to 350 different CPUs. The microprocessor development tools now support the latest version of Xilinx’s MicroBlaze 8.50.c, which is a soft processor core designed for Xilinx FPGAs. The MicroBlaze core is included with Xilinx’s Vivado Design Edition and IDS Embedded Edition.

The TRACE32 tools have supported MicroBlaze for many years by providing efficient and user-friendly debugging at the C or C++ level using the on-chip JTAG interface. This interface also provides code download, flash programming, and quick access to all internal chip peripherals and registers.
Contact Lauterbach for pricing.

Lauterbach GmbH
www.lauterbach.com

Xilinx, Inc.
www.xilinx.com

The Future of Inkjet-Printed Electronics

Silver nanoparticle ink is injected into an empty cartridge and used in conjunction with an off-the-shelf inkjet printer to enable ‘instant inkjet circuit’ prototyping. (Photo courtesy of Georgia Institute of Technology)

Silver nanoparticle ink is injected into an empty cartridge and used in conjunction with an off-the-shelf inkjet printer to enable ‘instant inkjet circuit’ prototyping. (Photo courtesy of Georgia Institute of Technology)

Over the past decade, major advances in additive printing technologies in the 2-D and 3-D electronics fabrication space have accelerated additive processing—printing in particular—into the mainstream for the fabrication of low-cost, conformal, and environmentally friendly electronic components and systems. Printed electronics technology is opening an entirely new world of simple and rapid fabrication to hobbyists, research labs, and even commercial electronics manufacturers.

Historically, PCBs and ICs have been fabricated using subtractive processing techniques such as photolithography and mechanical milling. These traditional techniques are costly and time-consuming. They produce large amounts of material and chemical waste and they are also difficult to perform on a small scale for rapid prototyping and experimentation.

This single-sided wiring pattern for an Arduino microcontroller was printed on a transparent sheet of coated PET film, (Photo courtesy of Georgia Technical Institute)

This single-sided wiring pattern for an Arduino microcontroller was printed on a transparent sheet of coated PET film, (Photo courtesy of Georgia Technical Institute)

To overcome the limitations of subtractive fabrication, over the past decade the ATHENA group at the Georgia Institute of Technology (Georgia Tech) has been developing an innovative inkjet-printing platform that can print complex, vertical ICs directly from a desktop inkjet printer.

To convert a standard desktop inkjet printer into an electronics fabrication platform, custom electronic inks developed by Georgia Tech replace the standard photo inks that are ejected out of the printer’s piezoelectric nozzles. Inks for depositing conductors, insulators/dielectrics, and sensors have all been developed. These inks can print not only single-layer flexible PCBs, but they can also print complex, vertically integrated electronic structures (e.g., multilayer wiring with interlayer vias, parallel-plate capacitors, batteries, and sensing topologies to sense gas, temperature, humidity, and touch).

To create highly efficient electronic inks, which are the key to the printing platform, Georgia Tech researchers exploit the nanoscale properties of electronic materials. Highly conductive metals (e.g., gold, silver, and copper) have very high melting temperatures of approximately 1,000°C when the materials are in their bulk or large-scale form. However, when these metals are decreased to nanometer-sized particles, their melting temperature dramatically decreases to below 100°C. These nanoscale particles can then be dispersed within a solvent (e.g., water or alcohol) and printed through an inkjet nozzle, which is large enough to pass the nanoparticles. After printing, the metal layer printed with nanoparticles is heated at a low temperature, which melts the particles back into a highly conductive metal to produce very low-resistance electrical structures.

Utilizing nanomaterials has enabled the creation of plastic, ceramic, piezoelectric, and carbon nanotube and graphene inks, which are the fundamental building blocks of a fully printed electronics platform. The inks are then tuned to have the correct viscosity and surface tension for a typical desktop inkjet printer.

By loading these nanomaterial-based conductive, dielectric, and sensing inks into the different-colored cartridges of a desktop inkjet printer, 3-D electronics topologies such as metal-insulator-metal (MIM) capacitors can then be created by printing the different inks on top of each other in a layer-by-layer deposition. Since printing is a non-contact additive deposition method, and the processing temperatures are below 100⁰C, these inks can be printed onto virtually any substrate, including standard photo paper, plastic, fabrics, and even silicon wafers to interface with standard ICs with printed feature sizes below 20 µm.

The Georgia Tech-developed printing platform is a major breakthrough. It makes the cost of additively fabricating circuits nearly the same as printing a photo on a home desktop inkjet printer—and with the same level of simplicity and accessibility.

These advancements in 2-D electronics printing combined with current research in low-cost 3-D printing are enabling commercial-grade fabrication of devices that typically required clean room environments and expensive manufacturing equipment. Such technology, when made accessible to the masses, has the potential to completely change the way we think about building, interacting with, and even purchasing electronics that can be digitally transmitted and printed.  While the printing technology is currently at a mature stage, we have only scratched the surface of potential applications that can benefit from printing low-cost, flexible electronic devices.

Peter Baston Wins the CC Code Challenge (Week 31)

We have a winner of last week’s CC Weekly Code Challenge, sponsored by IAR Systems! We posted a code snippet with an error and challenged the engineering community to find the mistake!

Congratulations to Peter Baston of Flintshire, United Kingdom for winning the CC Weekly Code Challenge for Week 31! Peter will receive a Circuit Cellar 2012 & 2011 Archive CD.

Peter’s correct answer was randomly selected from the pool of responses that correctly identified an error in the code. Peter answered:

Line 35: Should not end with semi-colon

2013_code_challenge_31_answer

You can see the complete list of weekly winners and code challenges here.

What is the CC Weekly Code Challenge?
Each week, Circuit Cellar’s technical editors purposely insert an error in a snippet of code. It could be a semantic error, a syntax error, a design error, a spelling error, or another bug the editors slip in. You are challenged to find the error. Once the submission deadline passes, Circuit Cellar will randomly select one winner from the group of respondents who submit the correct answer.

The CC Weekly Code Challenge ran from June 3rd through December 30th, 2013. Subscribe to our CC.Post newsletter to stay informed of other contests and challenges, as well as recent news, new issue availability, and more!

Trade Show Hand-Soldering Competition

The third annual IPC APEX EXPO Hand Soldering Competition will be held March 25–26, 2014, at the Mandalay Bay Resort and Convention Center, Las Vegas, Nevada, according to the event website.

This year’s challenge will be to build a functional electronics assembly in a 30-minute time period with a chance to compete in the IPC World Championship on March 27. Soldering technicians who can “bring it” are encouraged to sign up for one of a limited number of competition slots.

IPC Master Instructors will judge assemblies on soldering in accordance with IPC-A-610E, overall electrical functionality of assembly and the speed upon which the assembly was produced.

Cash prizes of $500, $250, and $100 will be awarded to the top three finalists at the close of the competition on March 26. In addition to receiving the cash award, the winner will move on to the IPC World Championship to face off with winners from IPC hand soldering competitions from around the world, including the United States, Asia and Europe. The winner of the IPC Hand Soldering World Championship will be awarded a $1,000 cash prize.

IPC APEX EXPO Hand Soldering Competition entries will be accepted until January 31, 2014. To submit an entry, click here. Metcal is premier sponsor of the event.

The hand soldering competitions will be held on the show floor. A free exhibits-only registration to IPC APEX EXPO provides free access to: the exhibition, which features more than 400 of the industry’s top suppliers; keynote sessions; technical BUZZ sessions; industry poster presentations, a show floor reception, and several networking events.

For more information on IPC APEX EXPO or to register, visit the event website.

Sponsorship opportunities are available; for more information, contact Maria Labriola, manager of trade show sales, at +1 847-597-2866 or marialabriola@ipc.org.

IPC is the largest international trade association for companies that make, use, specify and design printed circuit boards and electronics assemblies. It is a nonprofit organization with more than 3,300 company members worldwide.

Arduino MOSFET-Based Power Switch

Circuit Cellar columnist Ed Nisley has used Arduino SBCs in many projects over the years. He has found them perfect for one-off designs and prototypes, since the board’s all-in-one layout includes a micrcontroller with USB connectivity, simple connectors, and a power regulator.

But the standard Arduino presents some design limitations.

“The on-board regulator can be either a blessing or a curse, depending on the application. Although the board will run from an unregulated supply and you can power additional circuitry from the regulator, the minute PCB heatsink drastically limits the available current,” Nisley says. “Worse, putting the microcontroller into one of its sleep modes doesn’t shut off the rest of the Arduino PCB or your added circuits, so a standard Arduino board isn’t suitable for battery-powered applications.”

In Circuit Cellar’s January issue, Nisley presents a MOSFET-based power switch that addresses such concerns. He also refers to one of his own projects where it would be helpful.

“The low-resistance Hall effect current sensor that I described in my November 2013 column should be useful in a bright bicycle taillight, but only if there’s a way to turn everything off after the ride without flipping a mechanical switch…,” Nisley says. “Of course, I could build a custom microcontroller circuit, but it’s much easier to drop an Arduino Pro Mini board atop the more interesting analog circuitry.”

Nisley’s January article describes “a simple MOSFET-based power switch that turns on with a push button and turns off under program control: the Arduino can shut itself off and reduce the battery drain to nearly zero.”

Readers should find the article’s information and circuitry design helpful in other applications requiring automatic shutoff, “even if they’re not running from battery power,” Nisley says.

Figure 1: This SPICE simulation models a power p-MOSFET with a logic-level gate controlling the current from the battery to C1 and R2, which simulate a 500-mA load that is far below Q2’s rating. S1, a voltage-controlled switch, mimics an ordinary push button. Q1 isolates the Arduino digital output pin from the raw battery voltage.

Figure 1: This SPICE simulation models a power p-MOSFET with a logic-level gate controlling the current from the battery to C1 and R2, which simulate a 500-mA load that is far below Q2’s rating. S1, a voltage-controlled switch, mimics an ordinary push button. Q1 isolates the Arduino digital output pin from the raw battery voltage.

The article takes readers from SPICE modeling of the circuitry (see Figure 1) through developing a schematic and building a hardware prototype.

“The PCB in Photo 1 combines the p-MOSFET power switch from Figure 2 with a Hall effect current sensor, a pair of PWM-controlled n-MOFSETs, and an Arduino Pro Mini into

The power switch components occupy the upper left corner of the PCB, with the Hall effect current sensor near the middle and the Arduino Pro Mini board to the upper right. The 3-D printed red frame stiffens the circuit board during construction.

Photo 1: The power switch components occupy the upper left corner of the PCB, with the Hall effect current sensor near the middle and the Arduino Pro Mini board to the upper right. The 3-D printed red frame stiffens the circuit board during construction.

a brassboard layout,” Nisley says. “It’s one step beyond the breadboard hairball I showed in my article “Low-Loss Hall Effect Current Sensing” (Circuit Cellar 280, 2013), and will help verify that all the components operate properly on a real circuit board with a good layout.”

For much more detail about the verification process, PCB design, Arduino interface, and more, download the January issue.

The actual circuit schematic includes the same parts as the SPICE schematic, plus the assortment of connectors and jumpers required to actually build the PCB shown in Photo 1.

Figure 2: The actual circuit schematic includes the same parts as the SPICE schematic, as well as the assortment of connectors and jumpers required to actually build the PCB shown in Photo 1.

Multi-Zone Home Audio System

Dave Erickson built his first multi-zone audio system in the early 1990s using C microprocessor code he developed on Freescale MC68HC11 microprocessors. The system has been an important part of his home.

“I used this system for more than 15 years and was satisfied with its ability to send different sounds to the different rooms in my house as well as the basement and the deck,” he says. “But the system needed an upgrade.”

In Circuit Cellar’s January and February issues, Erickson describes how he upgraded the eight-zone system, which uses microprocessor-controlled analog circuitry. In the end, his project not only improved his home audio experience, it also won second place in a 2011 STMicroelectronics design contest.

Several system components needed updating, including the IR remote, graphic LCD, and microprocessor. “IR remotes went obsolete, so the IR codes needed to change,” Erickson says. “The system was 90% hand-wired and pretty messy. The LCD and several other parts became obsolete and the C development tools had expired. Processors had evolved to include flash memory and development tools evolved beyond the old burn-and-pray method.”

“My goal was to build a modern, smaller, cleaner, and more efficient system,” he says. “I decided to upgrade it with a recent processor and LCD and to use real PC boards.”

Photo 1: Clockwise from the upper left, the whole-house system includes the crosspoint board, two quad preamplifiers, two two-zone stereo amplifiers, an AC transformer, power supplies, and the CPU board with the STMicroelectronics STM32VLDISCOVERY board.

Photo 1: Clockwise from the upper left, the whole-house system includes the crosspoint board, two quad preamplifiers, two two-zone stereo amplifiers, an AC transformer, power supplies, and the CPU board with the STMicroelectronics STM32VLDISCOVERY board.

Erickson chose the STMicroelectronics STM32F100 microprocessor and the work incentive of a design contest deadline (see Photo 1).

“STMicroelectronics’s excellent libraries and examples helped me get the complex ARM Cortex-M3 peripherals working quickly,” he says. “Choosing the STM32F100 processor was a bit of overkill, but I hoped to later use it to add future capabilities (e.g., a web page and Ethernet control) and possibly even a simple music server and audio streaming.”

In Part 1 of the series, Erickson explains the design’s audio sections, including the crosspoint board, quad preamplifiers, modular audio amplifiers, and packaging. He also addresses challenges along the way.

Erickson’s Part 1 provides the following overview of the system, including its “analog heart”—the crosspoint board:

Figure 1 shows the system design including the power supplies, front-panel controls, and the audio and CPU boards. The system is modular, so there is flexibility in the front-panel controls and the number of channels and amplifiers. My goal was to fit it all into one 19”, 2U (3.5”) high rack enclosure.

The CPU board is based on a STM32F100 module containing a Cortex-M3-based processor and a USB programming interface. The CPU receives commands from a front-panel keypad, an IR remote control, an encoder knob, RS-232, and external keypads for each zone. It displays its status on a graphic LCD and controls the audio circuitry on the crosspoint and two quad preamplifier boards.

The system block diagram shows the boards, controls, amplifiers, and power supplies.

The system block diagram shows the boards, controls, amplifiers, and power supplies.


Photo 2 shows the crosspoint board, which is the analog heart of the system. It receives line-level audio signals from up to eight stereo sources via RCA jacks and routes audio to the eight preamplifier channels located on two quad preamplifier boards. It also distributes digital control and power to the preamplifiers. The preamplifier boards can either send line-level outputs or drive stereo amplifiers, either internal or external to the system.

My current system uses four line-level outputs to drive PCs or powered speakers in four of the zones. It also contains internal 40-W stereo amplifiers to directly drive speakers in the four other zones. Up to six stereo amplifiers can reside in the enclosure.

Photo 2: The crosspoint board shows the RCA input jacks (top), ribbon cable connections to the quad preamplifiers (right), and control and power cable from the CPU (bottom). Rev0 has a few black wires (lower center).

Photo 2: The crosspoint board shows the RCA input jacks (top), ribbon cable connections to the quad preamplifiers (right), and control and power cable from the CPU (bottom). Rev0 has a few black wires (lower center).

DIYers dealing with signal leakage issues in their projects may learn something from Erickson’s approach to achieving low channel-to-channel crosstalk and no audible digital crosstalk. “The low crosstalk requirement is to prevent loud music in one zone from disturbing quiet passages in another,” he says.

In Part 1, Erickson explains the crosspoint and his “grounding/guarding” approach to transmitting high-quality audio, power, and logic control signals on the same cable:

The crosspoint receives digital control from the CPU board, receives external audio signals, and distributes audio signals to the preamplifier boards and then on to the amplifiers. It was convenient to use this board to distribute the control signals and the power supply voltages to the preamplifier channels. I used 0.1” dual-row ribbon cables to simplify the wiring. These are low-cost and easy to build.

To transmit high-quality audio along with power and logic control signals on the same cable, it is important to use a lot of grounds. Two 34-pin cables each connect to a quad preamplifier board. In each of these cables, four channels of stereo audio are sent with alternating signals and grounds. The alternating grounds act as electric field “guards” to reduce crosstalk. There are just two active logic signals: I2C clock and data. Power supply voltages (±12 and 5 V) are also sent to the preamplifiers with multiple grounds to carry the return currents.

I used a similar grounding/guarding approach throughout the design to minimize crosstalk, both from channel to channel and from digital to analog. On the two-layer boards, I used ground planes on the bottom layer. Grounded guard traces or ground planes are used on the top layer. These measures minimize the capacitance between analog traces and thus minimize crosstalk. The digital and I2C signals are physically separated from analog signals. Where they need to be run nearby, they are separated by ground planes or guard traces.

To find out more about how Erickson upgraded his audio system, download the January issue (now available online) and the upcoming February issue. In Part 2, Erickson focuses on his improved system’s digital CPU, the controls, and future plans.

Ultra-Compact 50-W DC-DC Converter

CUIThe PQA50-D is an ultra-compact 50-W DC-DC converter that reduces board space and costs in telecommunications, industrial and IT equipment applications. The DC-DC converter family features a 2“ × 1“ (50.8-mm × 25.4-mm) footprint and incorporates six-sided metal shielding for improved electromagnetic compatibility (EMC) performance and efficiency up to 93%.

The single-output isolated DC-DC converter modules feature a 2:1 input range and are available with an 18~36 VDC or 36~75 VDC input voltage range and 3.3-, 5-, 12-, 15-, or 24-VDC output. The series features 1,500-VDC I/O isolation and protections for output over voltage, short circuit, over load, and input under voltage.

The series offers precise voltage regulation, featuring load regulation of ±1% maximum from 10% to 100% load and line regulation of ±0.5% maximum. The PQA50-D converters’ additional features include a –40~85 °C operating temperature range, remote on/off control, and ±10% voltage adjustability.

Pricing for the PQA50-D series starts at $85.12 in 100-unit quantities.

CUI, Inc.
www.cui.com

Six-Channel RS-422 Line Driver/Receiver

ic-HausThe iC-HF provides six RS-422 line drivers for 3-to-5.5-V encoder applications. The device contains reverse polarity protection for a safe sensor-side supply of up to 60 mA.

The iC-HF is pin configurable. A safe external signal sequence at two complementary line driver outputs activates the Encoder Link state. In the Encoder Link state, nine pins are connected from the sensor side to the field side. With this low-impedance bypassing, internal analog sensor signals and digital communication signals (e.g., BiSS, SPI, I²C, etc.) can be accessed at the line driver output pins.

With the integrated Encoder Link function, the line drivers can be deactivated and A/D signals can be directly accessed through the line driver output pins. Conventional sensors can be calibrated or programmed through the usual RS-422 outputs via the Encoder Link function. Extra contacts, pins, control lines, or signals are not needed. For differential RS-422 line driver operation, six differential complementary drivers are implemented.

Each push-pull driver stage can drive up to 65 mA maximum at 5 V and operate at up to a 10-MHz output frequency with RS-422 termination. The driver stages are current limited, short-circuit proof, and over-temperature protected. The current limitation also reduces electromagnetic compatibility (EMC).

The device provides under-voltage detection and on-chip temperature monitoring to switch the driver stages to high impedance on demand. A sensor error signal is combined with the iC-HF error states. When a fault occurs, the open-drain error output NERR is activated. All inputs are CMOS- and TTL-compatible and ESD protected.

The iC-HF’s operating temperatures range from –40°C to 125°C. The device is available in a 5-mm × 5-mm 32-pin QFN package. The design-in process is supported by ready-to-operate demonstration boards including the Encoder Link signal sequence generator.

The iC-HF costs $3.65 in 1,000-unit quantities.

iC-Haus GmbH
www.ichaus.com