AMD Embedded G-Series SoC Solution

AvalueThe ECM-KA SBC is powered by the AMD Embedded G-Series 1st generation system-on-chip (SoC) accelerated processing unit (APU) based on 28-nm design technology. The AMD processors are built on Jaguar microarchitecture and integrate Quad-core CPU and next-generation graphics core.

The small-footprint ECM-KA provides extremely low power consumption, high graphic performance, multimedia, and I/O. The SBC is designed for embedded applications including industrial controls and automation, gaming, thin clients, retail/digital signage, SMB storage server, surveillance, medical, communication, entertainment, and data acquisition.

The ECM-KA supports one 204-pin DDR3 SODIMM socket that supports up to 8 GB DDR3 1600 SDRAM. It also supports dual-channel 18-/24-bit LVDS as well as HDMI, LVDS, and VGA multi-display configurations. The I/O deployment includes two SATA III, one mini PCIe, one CF, two USB 3.0, six USB 2.0, two COM, 8-bit DIO, and 2-Gb Ethernet. Multiple OS support including Windows 8, Windows 7, and Linux can be used in various embedded designs.

Contact Avalue for pricing.

Avalue Technology, Inc.
www.avalue.com.tw

MCU-Based Projects and Practical Tasks

Circuit Cellar’s January issue presents several microprocessor-based projects that provide useful tools and, in some cases, entertainment for their designers.

Our contributors’ articles in the Embedded Applications issue cover a hand-held PIC IDE, a real-time trailer-monitoring system, and a prize-winning upgrade to a multi-zone audio setup.

Jaromir Sukuba describes designing and building the PP4, a PIC-to-PIC IDE system for programming and debugging a Microchip Technology PIC18. His solar-powered,

The PP4 hand-held PIC-to-PIC programmer

The PP4 hand-held PIC-to-PIC programmer

portable computing device is built around a Digilent chipKIT Max32 development platform.

“While other popular solutions can overshadow this device with better UI and OS, none of them can work with 40 mW of power input and have fully in-house developed OS. They also lack PP4’s fun factor,” Sukuba says. “A friend of mine calls the device a ‘camel computer,’ meaning you can program your favorite PIC while riding a camel through endless deserts.”

Not interested in traveling (much less programming) atop a camel? Perhaps you prefer to cover long distances towing a comfortable RV? Dean Boman built his real-time trailer monitoring system after he experienced several RV trailer tire blowouts. “In every case, there were very subtle changes in the trailer handling in the minutes prior to the blowouts, but the changes were subtle enough to go unnoticed,” he says.

Boman’s system notices. Using accelerometers, sensors, and a custom-designed PCB with a Microchip Technology PIC18F2620 microcontroller, it continuously monitors each trailer tire’s vibration and axle temperature, displays that information, and sounds an alarm if a tire’s vibration is excessive.  The driver can then pull over before a dangerous or trailer-damaging blowout.

But perhaps you’d rather not travel at all, just stay at home and listen to a little music? This issue includes Part 1 of Dave Erickson’s two-part series about upgrading his multi-zone home audio system with an STMicroelectronics STM32F100 microprocessor, an LCD, and real PC boards. His MCU-controlled, eight-zone analog sound system won second-place in a 2011 STMicroelectronics design contest.

In addition to these special projects, the January issue includes our columnists exploring a variety of  EE topics and technologies.

Jeff Bachiochi considers RC and DC servomotors and outlines a control mechanism for a DC motor that emulates a DC servomotor’s function and strength. George Novacek explores system safety assessment, which offers a standard method to identify and mitigate hazards in a designed product.

Ed Nisley discusses a switch design that gives an Arduino Pro Mini board control over its own power supply. He describes “a simple MOSFET-based power switch that turns on with a push button and turns off under program control: the Arduino can shut itself off and reduce the battery drain to nearly zero.”

“This should be useful in other applications that require automatic shutoff, even if they’re not running from battery power,” Nisley adds.

Ayse K. Coskun discusses how 3-D chip stacking technology can improve energy efficiency. “3-D stacked systems can act as energy-efficiency boosters by putting together multiple chips (e.g., processors, DRAMs, other sensory layers, etc.) into a single chip,” she says. “Furthermore, they provide high-speed, high-bandwidth communication among the different layers.”

“I believe 3-D technology will be especially promising in the mobile domain,” she adds, “where the data access and processing requirements increase continuously, but the power constraints cannot be pushed much because of the physical and cost-related constraints.”

Alvin Schurman Wins the CC Code Challenge (Week 28)

We have a winner of last week’s CC Weekly Code Challenge, sponsored by IAR Systems! We posted a code snippet with an error and challenged the engineering community to find the mistake!

Congratulations to Alvin Schurman of Florida, United States for winning the CC Weekly Code Challenge for Week 27! Alvin will receive a CC T-Shirt and a one year digital subscription/renewal.

Alvin’s correct answer was randomly selected from the pool of responses that correctly identified an error in the code. Alvin answered:

Line #35: Missing “, terminate()” before “after 0 -> ok” to recursively kill all (both) processes before ending

2013_code_challenge_28_answer

You can see the complete list of weekly winners and code challenges here.

What is the CC Weekly Code Challenge?
Each week, Circuit Cellar’s technical editors purposely insert an error in a snippet of code. It could be a semantic error, a syntax error, a design error, a spelling error, or another bug the editors slip in. You are challenged to find the error.Once the submission deadline passes, Circuit Cellar will randomly select one winner from the group of respondents who submit the correct answer.

Inspired? Want to try this week’s challenge? Get started!

Submission Deadline: The deadline for each week’s challenge is Sunday, 12 PM EST. Refer to the Rules, Terms & Conditions for information about eligibility and prizes.

Testing Power Supplies (EE Tip #112)

How can you determine the stability of your lab or bench-top supply? You can get a good impression of the stability of a power supply under various conditions by loading the output dynamically. This can be implemented using just a handful of components.

Power supply testing

Power supply testing

Apart from obvious factors such as output voltage and current, noise, hum and output resistance, it is also important that a power supply has a good regulation under varying load conditions. A standard test for this uses a resistor array across the output that can be switched between two values. Manufacturers typically use resistor values that correspond to 10% and 90% of the rated power output of the supply.

The switching frequency between the values is normally several tens of hertz (e.g. 40 Hz). The behavior of the output can then be inspected with an oscilloscope, from which you can deduce how stable the power supply is. At the rising edge of the square wave you will usually find an overshoot, which is caused by the way the regulator functions, the inductance of the internal and external wiring and any output filter.

This dynamic behavior is normally tested at a single frequency, but the designers in the Elektor Lab have tested numerous lab supplies over the years and it seemed interesting to check what happens at higher switching frequencies. The only items required for this are an ordinary signal generator with a square wave output and the circuit shown in Figure 1.Fig1-pwrsupply

You can then take measurements up to several megahertz, which should give you a really good insight for which applications the power supply is suitable. More often than not you will come across a resonance frequency at which the supply no longer remains stable and it’s interesting to note at which frequency that occurs.

The circuit really is very simple. The power MOSFET used in the circuit is a type that is rated at 80 V/75 A and has an on-resistance of only 10 mΩ (VGS = 10 V).

The output of the supply is continuously loaded by R2, which has a value such that 1/10th of the maximum output current flows through it (R2 = Vmax/0.1/max). The value of R1 is chosen such that 8/10th of the maximum current flows through it (R1 = Vmax/0.8/max). Together this makes 0.9/max when the MOSFET conducts. You should round the calculated values to the nearest E12 value and make sure that the resistors are able to dissipate the heat generated (using forced cooling, if required).

At larger output currents the MOSFET should also be provided with a small heatsink. The gate of the FET is connected to ground via two 100-Ω resistors, providing a neat 50-Ω impedance to the output of the signal generator. The output voltage of the signal generator should be set to a level between 5 V and 10 V, and you’re ready to test. Start with a low switching frequency and slowly increase it, whilst keeping an eye on the square wave on the oscilloscope. And then keep increasing the frequency… Who knows what surprises you may come across? Bear in mind though that the editorial team can’t be held responsible for any damage that may occur to the tested power supply. Use this circuit at your own risk!

— Harry Baggen and Ton Giesberts (Elektor, February 210)

Real-Time Trailer Monitoring System

Dean Boman, a retired electrical engineer and spacecraft communications systems designer, noticed a problem during vacations towing the family’s RV trailer—tire blowouts.

“In every case, there were very subtle changes in the trailer handling in the minutes prior to the blowouts, but the changes were subtle enough to go unnoticed,” he says in his article appearing in January’s Circuit Cellar magazine.

So Boman, whose retirement hobbies include embedded system design, built the trailer monitoring system (TMS), which monitors the vibration of each trailer tire, displays the

Figure 1—The Trailer Monitoring System consists of the display unit and a remote data unit (RDU) mounted in the trailer. The top bar graph shows the right rear axle vibration level and the lower bar graph is for left rear axle. Numbers on the right are the axle temperatures. The vertical bar to the right of the bar graph is the driver-selected vibration audio alarm threshold. Placing the toggle switch in the other position  displays the front axle data.

Photo 1 —The Trailer Monitoring System consists of the display unit and a remote data unit (RDU) mounted in the trailer. The top bar graph shows the right rear axle vibration level and the lower bar graph is for left rear axle. Numbers on the right are the axle temperatures. The vertical bar to the right of the bar graph is the driver-selected vibration audio alarm threshold. Placing the toggle switch in the other position displays the front axle data.

information to the driver, and sounds an alarm if tire vibration or heat exceeds a certain threshold. The alarm feature gives the driver time to pull over before a dangerous or damaging blowout occurs.

Boman’s article describes the overall layout and operation of his system.

“The TMS consists of accelerometers mounted on each tire’s axles to convert the gravitational (g) level vibration into an analog voltage. Each axle also contains a temperature sensor to measure the axle temperature, which is used to detect bearing or brake problems. Our trailer uses the Dexter Torflex suspension system with four independent axles supporting four tires. Therefore, a total of four accelerometers and four temperature sensors were required.

“Each tire’s vibration and temperature data is processed by a remote data unit (RDU) that is mounted in the trailer. This unit formats the data into RS-232 packets, which it sends to the display unit, which is mounted in the tow vehicle.”

Photo 1 shows the display unit. Figure 1 is the complete system’s block diagram.

Figure 1—This block diagram shows the remote data unit accepting data from the accelerometers and temperature sensors and sending the data to the display unit, which is located in the tow vehicle for the driver display.

Figure 1—This block diagram shows the remote data unit accepting data from the accelerometers and temperature sensors and sending the data to the display unit, which is located in the tow vehicle for the driver display.

The remote data unit’s (RDU’s) hardware design includes a custom PCB with a Microchip Technology PIC18F2620 processor, a power supply, an RS-232 interface, temperature sensor interfaces, and accelerometers. Photo 2 shows the final board assembly. A 78L05 linear regulator implements the power supply, and the RS-232 interface utilizes a Maxim Integrated MAX232. The RDU’s custom software design is written in C with the Microchip MPLAB integrated development environment (IDE).

The remote data unit’s board assembly is shown.

Photo 2—The remote data unit’s board assembly is shown.

The display unit’s hardware includes a Microchip Technology PIC18F2620 processor, a power supply, a user-control interface, an LCD interface, and an RS-232 data interface (see Figure 1). Boman chose a Hantronix HDM16216H-4 16 × 2 LCD, which is inexpensive and offers a simple parallel interface. Photo 3 shows the full assembly.

The display unit’s completed assembly is shown with the enclosure opened. The board on top is the LCD’s rear view. The board on bottom is the display unit board.

Photo 3—The display unit’s completed assembly is shown with the enclosure opened. The board on top is the LCD’s rear view. The board on bottom is the display unit board.

Boman used the Microchip MPLAB IDE to write the display unit’s software in C.

“To generate the display image, the vibration data is first converted into an 11-element bar graph format and the temperature values are converted from Centigrade to Fahrenheit. Based on the toggle switch’s position, either the front or the rear axle data is written to the LCD screen,” Boman says.

“To implement the audio alarm function, the ADC is read to determine the driver-selected alarm level as provided by the potentiometer setting. If the vibration level for any of the four axles exceeds the driver-set level for more than 5 s, the audio alarm is sounded.

“The 5-s requirement prevents the alarm from sounding for bumps in the road, but enables vibration due to tread separation or tire bubbles to sound the alarm. The audio alarm is also sounded if any of the temperature reads exceed 160°F, which could indicate a possible bearing or brake failure.”

The comprehensive monitoring gives Boman peace of mind behind the wheel. “While the TMS cannot prevent tire problems, it does provide advance warning so the driver can take action to prevent serious damage or even an accident,” he says.

For more details about Boman’s project, including RDU and display unit schematics, check out the January issue.