Electrical Engineering Crossword (Issue 281)

The answers to Circuit Cellar’s December electronics engineering crossword puzzle are now available.

281-Crossword-key

Across

4. VENNDIAGRAM—Represents many relation possibilities [two words]
5. PERSISTRON—Produces a persistent display
9. CODOMAIN—A set that includes attainable values
12. HOMOPOLAR—Electrically symmetrical
13. TRUTHTABLE—Determines a complicated statement’s validity [two words]
17. POWERCAPPING—Controls either the instant or the average power consumption [two words]
18. MAGNETRON—The first form, invented in 1920, was a split-anode type
19. MAGNETICFLUX—F
20. TURINGCOMPLETE—The Z3 functional program-controlled computer, for example [two words]

Down

1. CHAOSCOMPUTERCLUB—Well-known European hacker association [three words]
2. LOGICLEVEL—When binary, it is high and low [two words]
3. LINEARINTERPOLATION—A simple, but inaccurate, way to convert A/D values into engineering units [two words]
6. SYNCHRONOUSCIRCUIT—A clock signal ensures this device’s parts are in parallel [two words]
7. BOARDBRINGUP—Design validation process [three words]
8. HORNERSRULE—An algorithm for any polynomial order [two words]
10. MEALY—This machine’s current state and inputs dictate its output values
11. SQUAREWAVE—It is produced by a binary logic device [two words]
14. THEREMIN—Its electronic signals can be amplified and sent to a loudspeaker
15. ABAMPERE—10 A
16. SCOPEPROBE—Connects test equipment to a DUT [two words]

Prototyping for Engineers (EE Tip #111)

Prototyping is an essential part of engineering. Whether you’re working on a complicated embedded system or a simple blinking LED project, building a prototype can save you a lot of time, money, and hassle in the long run. You can choose one of three basic styles of prototyping: solderless breadboard, perfboard, and manufactured PCB. Your project goals, your schedule, and your circuit’s complexity are variables that will influence your choice. (I am not including styles like flying leads and wire-wrapping.)PrototypeTable

Table 1 details the pros and cons associated with each of the three prototyping options. Imagine a nifty circuit caught your eye and you want to explore it. If it’s a simple circuit, you can use the solderless breadboard (“white blob”) approach. White blobs come in a variety of sizes and patterns. By “pattern” I mean the number of the solderless connectors and their layout. Each connector is a group (usually five) of tie points placed on 0.1″ centers. Photo 1 shows how these small strips are typically arranged beneath the surface.Prototype p1-4

Following the schematic, you use the tie points to connect up to five components’ leads together. Each tie point is a tiny metal pincer that grips (almost) any lead plugged into it. You can use small wires to connect multiple tie points together or to connect larger external parts (see Photo 2).

If you want something a bit more permanent, you might choose to use the perfboard (“Swiss cheese”) approach. Like the solderless breadboards, perfboards are available in many sizes and patterns; however, I prefer the one-hole/ pad variety (see Photo 3). You can often find perfboards from enclosure manufacturers that are sized to fit the enclosures (see Photo 4).

There is nothing worse than wiring a prototype PCB and finding there isn’t enough room for all your parts. So, it pays to draw a part layout before you get started just to make sure everything fits. While I’m at it, I’ll add my 2¢ about schematic and layout programs.

The staff at Circuit Cellar uses CadSoft EAGLE design software for drawing schematics. (A free version is available for limited size boards.) I use the software for creating PCB layouts, drawing schematics, and popping parts onto PCB layouts using the proper board dimensions. Then I can use the drawing for a prototype using perfboard.

The final option is to have real prototypes manufactured. This is where the CAD software becomes a necessity. If you’ve already done a layout for your hand-wired prototype, most of the work is already done (sans routing). Some engineers will hand-wire a project first to test its performance. Others will go straight to manufactured prototypes. Many prototype PCB manufacturers offer a bare-bones special—without any solder masking or silkscreen—that can save you a few dollars. However, prices have become pretty competitive. (You can get a few copies of your design manufactured for around $100.)

There are two alternatives to having a PCB house manufacture your PCBs: do-it-yourself (DIY) and routing. If you choose DIY approach, you’ll have to work with ferric chloride (or another acid) to remove unwanted copper (see Photo 5). You’ll be able to produce some PCBs quickly, but it will likely be messy (and dangerous).Prototype p5-6

Routing involves using an x-y-z table to route between copper traces to isolate them from one another (see Photo 6). You’ll need access to an x-y-z table, which can be expensive.—CC25, Jeff Bachiochi, “Electrical Engineering: Tricks and Tools for Project Success,” 2013.

This piece originally appeared in CC25 2013

I/O Raspberry Pi Expansion Card

The RIO is an I/O expansion card intended for use with the Raspberry Pi SBC. The card stacks on top of a Raspberry Pi to create a powerful embedded control and navigation computer in a small 20-mm × 65-mm × 85-mm footprint. The RIO is well suited for applications requiring real-world interfacing, such as robotics, industrial and home automation, and data acquisition and control.

RoboteqThe RIO adds 13 inputs that can be configured as digital inputs, 0-to-5-V analog inputs with 12-bit resolution, or pulse inputs capable of pulse width, duty cycle, or frequency capture. Eight digital outputs are provided to drive loads up to 1 A each at up to 24 V.
The RIO includes a 32-bit ARM Cortex M4 microcontroller that processes and buffers the I/O and creates a seamless communication with the Raspberry Pi. The RIO processor can be user-programmed with a simple BASIC-like programming language, enabling it to perform logic, conditioning, and other I/O processing in real time. On the Linux side, RIO comes with drivers and a function library to quickly configure and access the I/O and to exchange data with the Raspberry Pi.

The RIO features several communication interfaces, including an RS-232 serial port to connect to standard serial devices, a TTL serial port to connect to Arduino and other microcontrollers that aren’t equipped with a RS-232 transceiver, and a CAN bus interface.
The RIO is available in two versions. The RIO-BASIC costs $85 and the RIO-AHRS costs $175.

Roboteq, Inc.
www.roboteq.com

CC281: Overcome Fear of Ethernet on an FPGA

As its name suggests, the appeal of an FPGA is that it is fully programmable. Instead of writing software, you design hardware blocks to quickly do what’s required of a digital design. This also enables you to reprogram an FPGA product in the field to fix problems “on the fly.”

But what if “you” are an individual electronics DIYer rather than an industrial designer? DIYers can find FPGAs daunting.

Issue281The December issue of Circuit Cellar issue should offer reassurance, at least on the topic of “UDP Streaming on an FPGA.” That’s the focus of Steffen Mauch’s article for our Programmable Logic issue (p. 20).

Ethernet on an FPGA has several applications. For example, it can be used to stream measured signals to a computer for analysis or to connect a camera (via Camera Link) to an FPGA to transmit images to a computer.

Nonetheless, Mauch says, “most novices who start to develop FPGA solutions are afraid to use Ethernet or DDR-SDRAM on their boards because they fear the resulting complexity.” Also, DIYers don’t have the necessary IP core licenses, which are costly and often carry restrictions.

Mauch’s UDP monitor project avoids such costs and restrictions by using a free implementation of an Ethernet-streaming device based on a Xilinx Spartan-6 LX FPGA. His article explains how to use OpenCores’s open-source tri-mode MAC implementation and stream UDP packets with VHDL over Ethernet.

Mauch is not the only writer offering insights into FPGAs. For more advanced FPGA enthusiasts, columnist Colin O’Flynn discusses hardware co-simulation (HCS), which enables the software simulation of a design to be offloaded to an FPGA. This approach significantly shortens the time needed for adequate simulation of a new product and ensures that a design is actually working in hardware (p. 52).

This Circuit Cellar issue offers a number of interesting topics in addition to programmable logic. For example, you’ll find a comprehensive overview of the latest in memory technologies, advice on choosing a flash file system for your embedded Linux system, a comparison of amplifier classes, and much more.

Mary Wilson
editor@circuitcellar.com

Rob Tholl Wins the CC Code Challenge (Week 23)

We have a winner of last week’s CC Weekly Code Challenge, sponsored by IAR Systems! We posted a code snippet with an error and challenged the engineering community to find the mistake!

Congratulations to Rob Tholl of Calgary, Alberta, Canada for winning the CC Weekly Code Challenge for Week 23! Rob will receive a CCGold Issues Archive.

Rob’s correct answer was randomly selected from the pool of responses that correctly identified an error in the code. Rob answered:

Line 14: need &array[c] to write to the proper memory location

2013_code_challenge_23_answer

You can see the complete list of weekly winners and code challenges here.

What is the CC Weekly Code Challenge?
Each week, Circuit Cellar’s technical editors purposely insert an error in a snippet of code. It could be a semantic error, a syntax error, a design error, a spelling error, or another bug the editors slip in. You are challenged to find the error.Once the submission deadline passes, Circuit Cellar will randomly select one winner from the group of respondents who submit the correct answer.

Inspired? Want to try this week’s challenge? Get started!

Submission Deadline: The deadline for each week’s challenge is Sunday, 12 PM EST. Refer to the Rules, Terms & Conditions for information about eligibility and prizes.