Member Profile: Scott Weber

Scott Weber

Scott Weber

Arlington, Texas, USA

Scott said he started his Circuit Cellar subscription late in the last century. He chose the magazine because it had the right mix of MCU programming and electronics.

He has always enjoyed mixing discrete electronic projects with MCUs. In the early 1980s, he built a MCU board based on an RCA CDP1802 with wirewrap and programmed it with eight switches and a load button.

Back in the 1990s, Scott purchased a Microchip Technology PICStart Plus. “I was thrilled at how powerful and comprehensive the chip and tools were compared to the i8085 and CDP1802 devices I tinkered with years before,” he said.

Scott said he recently treated himself to a brand-new Fluke 77-IV multimeter.

Scott is building devices that can communicate through USB to MS Windows programs. “I don’t have in mind any specific system to control, it is something to learn and have fun with,” he said. “This means learning not only an embedded USB software framework, but also Microsoft Windows device drivers.”

“Embedded devices are popping up everywhere—in places most people don’t even realize they are being used. It’s fun discovering where they are being applied. It is so much easier to change the microcode of an MCU or FPGA as the unit is coming off the assembly line than it is to rewire a complex circuit design,” Scott said.

“I also like Member Profile Joe Pfeiffer’s final comment in Circuit Cellar 276: Surface-mount and ASIC devices are making a ‘barrier to entry’ for the hobbyist. You can’t breadboard those things! I gotta learn a good way to make my own PCBs!”

Brian Shewan Wins the CC Code Challenge (Week 21)

We have a winner of last week’s CC Weekly Code Challenge, sponsored by IAR Systems! We posted a code snippet with an error and challenged the engineering community to find the mistake!

Congratulations to Brian Shewan of Nova Scotia, Canada for winning the CC Weekly Code Challenge for Week 21! Brian will receive an Elektor 2012 & 2011 Archive DVD.

Brians’s correct answer was randomly selected from the pool of responses that correctly identified an error in the code. Brian answered:

Line #4 – Missing ‘.’ after ‘PROGRAM-ID’. Change to “PROGRAM-ID. JUST-A-TEST.”


You can see the complete list of weekly winners and code challenges here.

What is the CC Weekly Code Challenge?
Each week, Circuit Cellar’s technical editors purposely insert an error in a snippet of code. It could be a semantic error, a syntax error, a design error, a spelling error, or another bug the editors slip in. You are challenged to find the error.Once the submission deadline passes, Circuit Cellar will randomly select one winner from the group of respondents who submit the correct answer.

Inspired? Want to try this week’s challenge? Get started!

Submission Deadline: The deadline for each week’s challenge is Sunday, 12 PM EST. Refer to the Rules, Terms & Conditions for information about eligibility and prizes.

The Adafruit Learning System Releases Bluetooth HID Keyboard Controller

Bluefruit2Adafruit’s Bluefruit EZ-Key enables you to create a wireless Bluetooth keyboard controller in an hour. The module acts as a Bluetooth keyboard and is compatible with any Bluetooth-capable device (e.g., Mac, Windows, Linux, iOS, and Android).

You simply power the Bluefruit EZ-Key with 3 to 16 VDC and pair it to a computer, tablet, or smartphone. You can then connect buttons from the 12 input pins. When a button is pressed, it sends a keypress to the computer. The module has been preprogrammed to send the four arrow keys, return, space, “w,” “a,” “s,” “d,” “1,” and “2” by default. Advanced users can use a Future Technology Devices International (FTDI) chip or other serial console cable to reprogram the module’s keys for a human interface device (HID) key report.

BluefruitEach Bluefruit EZ-Key has a unique identifier. More than one module can be paired to a single device. The FCC- and CE-certified, RoHS-compliant modules integrate easily into your project.

Pricing for the Bluefruit EZ-Key begins at $19.95. For more information, visit The Adafruit Learning System. Bluefruit EZ-Key tutorials are also available.

High-Tech Halloween

Still contemplating Halloween ideas? Do you have a costume yet? Is your house trick-or-treat ready? Perhaps some of these high-tech costumes and decorations will help get you in the spirit.

Recent Circuit Cellar interviewee Jeremy Blum designed a creative and high-tech costume that includes 12 individually addressable LEDs, an Adafruit microcontroller, and 3-D printing.


Custom animatronic skull


Animatronic talking raven

Looking for Halloween decoration inspiration? Peter Montgomery designed some programmable servo animation controllers built around a Freescale Semiconductor 68HC11 microcontroller and a Parallax SX28 configurable controller.

Peter’s Windows-based plastic skull is animated with RC servos controlled via a custom system. It moves at 24 or 30 frames per second over a custom RS-485 network.
This animatronic talking raven features a machined aluminum armature and moves via RC servos. The servos are controlled by a custom system using Windows and embedded controllers.

Peter’s Halloween projects were originally featured in “Servo Animation Controller” (Circuit Cellar 188, 2006). He displays the Halloween projects every year.

Feeling inspired? Share your tech-based Halloween projects with us.

Arduino-Based Hand-Held Gaming System

gameduino2-WEBJames Bowman, creator of the Gameduino game adapter for microcontrollers, recently made an upgrade to the system adding a Future Technology Devices International (FTDI) FT800 chip to drive the graphics. Associate Editor Nan Price interviewed James about the system and its capabilities.

NAN: Give us some background. Where do you live? Where did you go to school? What did you study?


James Bowman

 JAMES: I live on the California coast in a small farming village between Santa Cruz and San Francisco. I moved here from London 17 years ago. I studied computing at Imperial College London.

NAN: What types of projects did you work on when you were employed by Silicon Graphics, 3dfx Interactive, and NVIDIA?

JAMES: Always software and hardware for GPUs. I began in software, which led me to microcode, which led to hardware. Before you know it you’ve learned Verilog. I was usually working near the boundary of software and hardware, optimizing something for cost, speed, or both.

NAN: How did you come up with the idea for the Gameduino game console?

JAMES: I paid for my college tuition by working as a games programmer for Nintendo and Sega consoles, so I was quite familiar with that world. It seemed a natural fit to try to give the Arduino some eye-catching color graphics. Some quick experiments with a breadboard and an FPGA confirmed that the idea was feasible.

NAN: The Gameduino 2 turns your Arduino into a hand-held modern gaming system. Explain the difference from the first version of Gameduino—what upgrades/additions have been made?


The Gameduino2 uses a Future Technology Devices International chip to drive its graphics

JAMES: The original Gameduino had to use an FPGA to generate graphics, because in 2011 there was no such thing as an embedded GPU. It needs an external monitor and you had to supply your own inputs (e.g., buttons, joysticks, etc.). The Gameduino 2 uses the new Future Technology Devices International (FTDI) FT800 chip, which drives all the graphics. It has a built-in color resistive touchscreen and a three-axis accelerometer. So it is a complete game system—you just add the CPU.

NAN: How does the Arduino factor into the design?


An Arduino, Ethernet adapter, and a Gameduino

 JAMES: Arduino is an interesting platform. It is 5 V, believe it or not, so the design needs a level shifter. Also, the Arduino is based on an 8-bit microcontroller, so the software stack needs to be carefully built to provide acceptable performance. The huge advantage of the Arduino is that the programming environment—the IDE, compiler, and downloader—is used and understood by hundreds of thousands of people.

 NAN: Is it easy or possible to customize the Gameduino 2?

 JAMES: I would have to say no. The PCB itself is entirely surface mount technology (SMT) and all the ICs are QFNs—they have no accessible pins! This is a long way from the DIP packages of yesterday, where you could change the circuit by cutting tracks and soldering onto the pins.

I needed a microscope and a hot air station to make the Gameduino2 prototype. That is a long way from the “kitchen table” tradition of the Arduino. Fortunately the Arduino’s physical design is very customization-friendly. Other devices can be stacked up, adding networking, hi-fi sound, or other sensor inputs.

 NAN: The Gameduino 2 project is on Kickstarter through November 7, 2013. Why did you decide to use Kickstarter crowdfunding for this project?

 JAMES: Kickstarter is great for small-scale inventors. The audience it reaches also tends to be interested in novel, clever things. So it’s a wonderful way to launch a small new product.

NAN: What’s next for Gameduino 2? Will the future see a Gameduino 3?

 JAMES: Product cycles in the Arduino ecosystem are quite long, fortunately, so a Gameduino 3 is distant. For the Gameduino 2, I’m writing a book, shipping the product, and supporting the developer community, which will hopefully make use of it.