Member Profile: Steve Hendrix

Steve Hendrix

Location: Sagamore Hills, OH (located between Cleveland and Akron)

Education: BS, United States Air Force Academy, El Paso County, CO

Occupation: Steve began moonlighting as an engineering consultant in 1979. He has been a full-time consultant since 1992.

Member Status: He says he has been a subscriber since “forever.” He remembers reading the Circuit Cellar columns in Byte magazine.

Technical Interests: Steve enjoys embedded design, from picoamps to kiloamps, from nanovolts to kilovolts, from microhertz to gigahertz, and from nanowatts to kilowatts.
Current Projects: He is working on eight active professional projects. Most of his projects involve embedding Microchip Technology’s PIC18 microcontroller family.

Some of Steve’s projects include Texas Instruments Bluetooth processors and span all the previously mentioned ranges in the interfacing hardware. Steve says he is also working on a personal project involving solar photovoltaic power.

Thoughts on the Future of Embedded Technology: Steve thinks of embedded technology as “a delicate balancing act: time spent getting the technology set up vs. time we would spend to do the same job manually; convenience and connectivity vs. privacy, time, and power saved vs. energy consumed; time developing the technology vs. its payoffs; and connectedness with people far away vs. with those right around us.” Additionally, he says there are always the traditional three things to balance “good, fast, cheap—choose two!”

Accurate Measurement Power Analyzer

The PA4000 power analyzer provides accurate power measurements. It offers one to four input modules, built-in test modes, and standard PC interfaces.

The analyzer features innovative Spiral Shunt technology that enables you to lock onto complex signals. The Spiral Shunt design ensures stable, linear response over a range of input current levels, ambient temperatures, crest factors, and other variables. The spiral construction minimizes stray inductance (for optimum high-frequency performance) and provides high overload capability and improved thermal stability.

The PA4000’s additional features include 0.04% basic voltage and current accuracy, dual internal current shunts for optimal resolution, frequency detection algorithms for noisy waveform tracking, application-specific test modes to simplify setup. The analyzer  easily exports data to a USB flash drive or PC software. Harmonic analysis and communications ports are included as standard features.

Contact Tektronix for pricing.

Tektronix, Inc.
www.tek.com

Industrial Double-Break Switch for IP67/68

The MP220 is an industrial high-current switch. It features a single-pole, double-break electrical circuit that enables it to double break two independent electrical circuits.

The MP220 switch utilizes a fast snap action mechanism to transition from break-to-make position. The switch in its standard version is currently IP67 sealed. An improved sealing for IP68 applications with a strengthened cable exit is also available.

The MP220 is available in standard microswitch-size housing with a range of possible actuators and a four-wire potted cable. The switch is EN61058-certified for 250 VAC/10 A with a –40°C-to-130°C operating temperature range.

Contact Microprecision for pricing.

Microprecision Electronics SA
www.microprecision.ch

CC278: New Issue, New Look, New Media

Over the years, Circuit Cellar editors have learned you simply can’t stand still when your magazine focuses on ever-evolving embedded electronics. So with the September issue, we introduce a dramatic redesign to make the magazine’s look more contemporary and its connection with our website stronger.

The heart of our content is still project pieces and columns. For example, in this issue, Nelson Epp writes about a Rubik’s Cube-solving robot (p. 24), Walter Krawec examines evolving neural networks in robotics (p. 42), and Brian Millier describes how to configure his “Iso-Pi” I/0 board for the Raspberry Pi single-board computer (p. 32).

In addition, our column topics include examining different battery types and their characteristics (p. 48), exploring commodity LED characteristics with a stress tester and an optical output detector (p. 54), and understanding BMP graphical file formats (p. 64).

Speaking of columnists, the September issue introduces a new one—Ayse Coskun, a Boston University assistant professor. Her bimonthly Green Computing column will focus on topics that recognize energy is a “first-order constraint” on any computing system, large or small. So she will be looking at everything from energy-efficient software and hardware-design strategies to electricity cost savings and battery-life extension (p. 60).

Another new feature is CC World (p. 8), which will provide monthly updates on topics of interest to the magazine’s international community of engineers, academics, and students. This month, we touch on the CC Weekly Code Challenge and the designers participating in Elektor-LABS.com, the lab-tested, project-sharing site provided by Elektor International Media (EIM).

But our changes are not simply about what you see on the magazine’s pages. This redesign makes it easier for you to connect our print content to related material at circuitcellar.com.

At the end of each article, you’ll discover an easier way to find project files and supporting documents online. You can either type circuitcellar.com/ccmaterials in your browser or use your smartphone to scan the printed QR code.

We hope you enjoy the new look and conveniences.

Data Acquisition Instrument

The DI-145 USB data acquisition instrument features four ±100-V analog channels and two dedicated digital inputs. The included DATAQ WinDaq data acquisition software (DAS) enables you to display and record data to a PC hard drive in real time. Once recorded, data can be played back, analyzed, or exported to an array of data acquisition and spreadsheet formats.

DATAQ also provides access to the DI-145 data protocol, which enables access to the DI-145 on any Windows, Linux, or MAC OS. In addition, .NET control is available to Windows users who wish to use a third-party programming language (e.g., Microsoft’s Visual Basic or National Instruments’s LabVIEW) to interface with the DI-145.

The four ±10-V fixed differential channels are protected from transient spikes up to ±150 V peak (±75 V, continuous). A 10-bit ADC provides 19.5-mV resolution across the full-scale measurement range. Digital inputs are protected up to ±30 VDC/peak AC. The digital inputs enable you to use a switch closure or TTL signal to remotely insert event marks or record data to disk.

The DI-145 measures 1.53” × 2.625” × 5.5” (3.89 cm × 6.67 cm × 13.97 cm) and weighs 3.6 oz. The data acquisition instrument costs $29 and includes a mini screwdriver, a USB cable, WinDaq/Lite DAS, access to the data protocol, and .NET control.

DATAQ Instruments, Inc.
www.dataq.com