SMTA Accepting Registration for Conference and Exhibition

Surface Mount Circuit BoardThe Surface Mount Technology Association has finalized its program for the  SMTA International Conference and Exhibition (SMTA Internationial) to be held October 13-17, 2013, in Fort Worth, TX.

The SMTA is an international network of professionals who build skills, share knowledge and develop solutions in electronic assembly technologies, including microsystems, emerging technologies and related business operations, according to its website.

Recently,  the SMTA announced an agreement to co-locate SMTA International  with the IPC Fall Standards Development Committee meetings for 2013, 2014, and 2015. SMTA International will be held October 13-17, 2013, and the IPC Fall Standards Development Committee meetings will be held October 12-17, 2013 at the Fort Worth Convention Center.

“I am pleased to welcome IPC standards activities to our International Technical Conference and Exhibition,” SMTA President Bill Barthel said. “We see the leading edge technology and the all-important standards development as a great combination for attendees.”

SMTA International provides the latest research to help reduce defects and control processes, according to the organization’s website.

“This year, we are offering a new symposium on Counterfeit Electronics, expanding the Harsh Environments Symposium, and offering new tutorials including “Design for Reliability for PCBs,” which is free for members,” the website says.

The conference portion of SMTA International is October 13-17, 2013, and exhibition takes place October 15-16, 2013.

Early bird registration ends Friday, Sept. 13. For more details and to register, visit the SMTA website,

Andrew Boelbaai Wins the CC Code Challenge (Week 12)

We have a winner of last week’s CC Weekly Code Challenge, sponsored by IAR Systems! We posted a code snippet with an error and challenged the engineering community to find the mistake!

Congratulations to Andrew Boelbaai of Sugar Land, Texas, United States for winning the CC Weekly Code Challenge for Week 121! Andrew will receive the Elektor 2011 & 2012 Archive DVD.

Andrew’s correct answer was randomly selected from the pool of responses that correctly identified an error in the code. Andrew answered:

Line 10: J is not incrementing and causing an infinite loop. Must be for(j=0; j<count; sum += data[j++])


You can see the complete list of weekly winners and code challenges here.

What is the CC Weekly Code Challenge?
Each week, Circuit Cellar’s technical editors purposely insert an error in a snippet of code. It could be a semantic error, a syntax error, a design error, a spelling error, or another bug the editors slip in. You are challenged to find the error.Once the submission deadline passes, Circuit Cellar will randomly select one winner from the group of respondents who submit the correct answer.

Inspired? Want to try this week’s challenge? Get started!

Submission Deadline: The deadline for each week’s challenge is Sunday, 12 PM ESTRefer to the Rules, Terms & Conditions for information about eligibility and prizes.

Two-Channel CW Laser Diode Driver with an MCU Interface

The iC-HT laser diode driver enables microcontroller-based activation of laser diodes in Continuous Wave mode. With this device, laser diodes can be driven by the optical output power (using APC), the laser diode current (using ACC), or a full controller-based power control unit.

The maximum laser diode current per channel is 750 mA. Both channels can be switched in parallel for high laser diode currents of up to 1.5 A. A current limit can also be configured for each channel.

Internal operating points and voltages can be output through ADCs. The integrated temperature sensor enables the system temperature to be monitored and can also be used to analyze control circuit feedback. Logarithmic DACs enable optimum power regulation across a large dynamic range. Therefore, a variety of laser diodes can be used.

The relevant configuration is stored in two equivalent memory areas. Internal current limits, a supply-voltage monitor, channel-specific interrupt-switching inputs, and a watchdog safeguard the laser diodes’ operation through iC-HT.

The device can be also operated by pin configuration in place of the SPI or I2C interface, where external resistors define the APC performance targets. An external supply voltage can be controlled through current output device configuration overlay (DCO) to reduce the system power dissipation (e.g., in battery-operated devices or systems).

The iC-HT operates on 2.8 to 8 V and can drive both blue and green laser diodes. The diode driver has a –40°C-to-125°C operating temperature range and is housed in a 5-mm × 5-mm, 28-pin QFN package.

The iC-HT costs $13.20 in 1,000-unit quantities.

iC-Haus GmbH

Low-Cost, High-Performance 32-bit Microcontrollers

The PIC32MX3/4 32-bit microcontrollers are available in 64/16-, 256/64-, and 512/128-KB flash/RAM configurations. The microcontrollers are coupled with Microchip Technology’s software and tools for designs in connectivity, graphics, digital audio, and general-purpose embedded control.

The microcontrollers offer high RAM memory options and high peripheral integration at a low cost. They feature 28 10-bit ADCs, five UARTS, 105-DMIPS performance, serial peripherals, a graphic display, capacitive touch, connectivity, and digital audio support.
The PIC32MX3/4 microcontrollers are supported with general software development tools, including Microchip Technology’s MPLAB X integrated development environment (IDE) and the MPLAB XC32 C/C++ compiler.

Application-specific tools include the Microchip Graphics Display Designer X and the Microchip Graphics Library, which provide a visual design tool that enables quick and easy creation of graphical user interface (GUI) screens for applications. The microcontrollers are also supported with a set of Microchip’s protocol stacks including TCP/IP, USB Device and Host, Bluetooth, and Wi-Fi. For digital audio applications, Microchip provides software for tasks such as sample rate conversion (SRC), audio codecs—including MP3 and Advanced Audio Coding (AAC), and software to connect smartphones and other personal electronic devices.

The PIC32MX3/4 family is supported by Microchip’s PIC32 USB Starter Kit III, which costs $59.99 and the PIC32MX450 100-pin USB plug-in module, which costs $25 for the modular Explorer 16 development system. Pricing for the PIC32MX3/4 microcontrollers starts at $2.50 each in 10,000-unit quantities.

Microchip Technology, Inc.

Low-Power, High-Efficiency Boost Regulator

The TS3300 is an ultra-low-power, load-independent, high-efficiency boost regulator. It operates from supply voltages as low as 0.6 up to 4.5 V and can deliver at least 75 mA of continuous output current.

The TS3300 can be powered from a variety of power sources including single- or multiple-cell alkaline or single Li-chemistry batteries. The boost regulator’s output voltage range can be user-specified from 1.8 to 5.25 V to simultaneously power a range of low-power analog circuits, microcontrollers, and low-energy Bluetooth radios. The TS3300 produces a 3-V output from a 1.2-V input source. Its efficiency performance is constant over a 100:1 span in output current. To power low-energy radios, the TS3300’s internal, low-dropout linear regulator can deliver up to 100 mA output current while reducing boost-converter-generated output voltage ripple.

Drawing only 3.5 µA no-load supply current, the TS3300 is ideal for “always on” and other battery-powered or portable applications where an extended battery run-time is required. The TS3300 operates from low power sources (e.g., photovoltaic cells to three alkaline cells) and is ideally suited for handheld/portable applications (e.g., wireless remote sensors, RFID tags, wireless microphones, solar cell post-regulator/chargers, post-regulators for energy harvesting, blood glucose meters, and personal health-monitoring devices).

The TS3300 is fully specified over the –40°C-to-85°C temperature range and is available in a low-profile, thermally-enhanced 16-pin 3mm × 3mm TQFN package with an exposed backside paddle. The TS3300 costs $0.85 in 1,000-unit quantities.

Touchstone Semiconductor