Embedded Sensor Innovation at MIT

During his June 5 keynote address at they 2013 Sensors Expo in Chicago, Joseph Paradiso presented details about some of the innovative embedded sensor-related projects at the MIT Media Lab, where he is the  Director of the Responsive Environments Group. The projects he described ranged from innovative ubiquitous computing installations for monitoring building utilities to a small sensor network that transmits real-time data from a peat bog in rural Massachusetts. Below I detail a few of the projects Paradiso covered in his speech.

DoppleLab

Managed by the Responsive Enviroments group, the DoppelLab is a virtual environment that uses Unity 3D to present real-time data from numerous sensors in MIT Media Lab complex.

The MIT Responsive Environments Group’s DoppleLab

Paradiso explained that the system gathers real-time information and presents it via an interactive browser. Users can monitor room temperature, humidity data, RFID badge movement, and even someone’s Tweets has he moves throughout the complex.

Living Observatory

Paradiso demoed the Living Observatory project, which comprises numerous sensor nodes installed in a peat bog near Plymouth, MA. In addition to transmitting audio from the bog, the installation also logs data such as temperature, humidity, light, barometric pressure, and radio signal strength. The data logs are posted on the project site, where you can also listen to the audio transmission.

The Living Observatory (Source: http://tidmarsh.media.mit.edu/)

GesturesEverywhere

The GesturesEverywhere project provides a real-time data stream about human activity levels within the MIT Media Lab. It provides the following data and more:

  • Activity Level: you can see the Media Labs activity level over a seven-day period.
  • Presence Data: you can see the location of ID tags as people move in the building

The following video is a tracking demo posted on the project site.

The aforementioned projects are just a few of the many cutting-edge developments at the MIT Media Lab. Paradiso said the projects show how far ubiquitous computing technology has come. And they provide a glimpse into the future. For instance, these technologies lend themselves to a variety of building-, environment-, and comfort-related applications.

“In the early days of ubiquitous computing, it was all healthcare,” Paradiso said. “The next frontier is obviously energy.”

Chris Austen Wins the CC Code Challenge (Week 2)

It’s Wednesday, which means we’re announcing the winner of last week’s CC Weekly Code Challenge, sponsored by IAR Systems! We posted a code snippet with an error and challenged the engineering community to find mistake!

Congratulations to Chris Austen of South Yorkshire, UK, for winning the CC Weekly Code Challenge for Week 2! He’ll receive a CC Gold issue archive on a USB drive.

Chris’s correct answer was randomly selected from the pool of responses that correctly identified an error in the code. Chris answered:

Line 5: ROT should be SWAP ROT for the given stack effect – though -ROT will work too.

The Code Challenge for Week 2

You can see the complete list of weekly winners and code challenges here.

What is the CC Weekly Code Challenge?
Each week, Circuit Cellar’s technical editors purposely insert an error in a snippet of code. It could be a semantic error, a syntax error, a design error, a spelling error, or another bug the editors slip in. You are challenged to find the error.Once the submission deadline passes, Circuit Cellar will randomly select one winner from the group of respondents who submit the correct answer.

Inspired? Want to try this week’s challenge? Get started!

Submission Deadline: The deadline for each week’s challenge is Sunday, 12 PM ESTRefer to the Rules, Terms & Conditions for information about eligibility and prizes.

Client Profile: Beta LAYOUT

Beta LAYOUT
965 Eubanks Drive, Suite 1B,
Vacaville, CA 95688

www.magic-pcb.com

Contact: Tony Shoot – tony.shoot@beta-layout.us

Product Information: Are you looking for a unique system to identify your PCBs and electronic devices that is fast, copy-proof, reliable, and virtually indestructible? Are you tired of fighting with illegible EAN codes, ripped-off labels, and product piracy?

Beta LAYOUT has the perfect solution: MAGIC-PCB, the RFID PCB identification system. Imagine your bare PCB could “invisibly” contain the board revision, bill of materials, firmware version, documentation link, schematics and layout file, date code, and manufacturing plant information without using any space.

MAGIC-PCB RFID tags are embedded into PCBs at an early stage of PCB production. Use this exciting technology in your product design cycle to authenticate, track, and protect your product. For more information, visit www.pcb-pool.com/ppus/info_pcbpool_rfid.html.

Beta LAYOUT also offers the UHF RFID Kit, an ideal tool to research RFID technology without major investment. The kit costs $385 and includes a write-read module with a USB port, a USB cable (to the PC), antennas for medium/long range and short range, a connecting cable antenna to the write-read module, a MAGIC PCB with an embedded RFID chip, four mini PCBs with RFID chips (different ranges), and RFID chips for different antenna designs. The reader can bulk read up to 255 transponders. For more information, visit www.beta-estore.com/rkus/index.html.

Exclusive Offer: A discount will be offered to Circuit Cellar readers who purchase a UHF RFID starter kit. For more information, contact Tony Shoot tony.shoot@beta-layout.us.

DIY Single-Board Computers

Countless technological innovations have certainly made the earliest personal  computers long obsolete. As Circuit Cellar contributors Oscar Vermeulen and Andrew Lynch note:  “Today there is no sensible use for an 8-bit, 64-KB computer with less processing power than a mobile phone. “

Nonetheless, there exists a “retrocomputing”  subculture that resurrects older computer hardware and software in DIY projects. It may be sentimental, but it can also be instructive.

In their two-part series beginning in July in Circuit Cellar, Vermeulen and Lynch focus on that strain of retrocomputing that involves designing and building your own computer system from a “bag of chips” and a circuit board.

Part 1 describes a simple single-board CP/M design that uses just one high-capacity RAM chip and is compatible with a serial or PC terminal.

Here is a homebrew N8VEM system with a single-board computer (SBC) and disk/IDE card plugged into the ECB backplane.

“It is easy to create a functional computer on a little circuit board—considering all the information now available on the Internet,” Vermeulen and Lynch say in Part 1.  “These retro machines may not have much practical use, but the learning experience can be tremendously valuable.”

Some “homebrewed” computer creations  can be “stunningly exotic,” according to Vermeulen and Lynch, but most people build simple machines.

“They use a CPU and add RAM, ROM, a serial port, and maybe an IDE interface for mass storage. And most hobbyists run either BASIC (e.g., the 1980s home computers) or use a “vintage” OS such as CP/M.

“Running CP/M, in fact, is a nice target to work toward. A lot of good software ensures your homebrew computer can do something interesting once it is built. As the predecessor of MS-DOS, CP/M also provides a familiar command-line interface. And it is simple. A few days of study are enough to port it to your circuit board.”

But some Circuit Cellar readers may want more from a retrocomputing experience than a one-off project.  In that case, there are online resources that can help, according to the authors.

“Working on your own, it can become progressively more difficult to take the next steps (i.e., building graphics subsystems or using exotic processors) or to add state-of-the-art microcontrollers to create ‘Frankenstein’ systems (i.e., blends of old and new technology that can do something useful, such as automate your home).”

Part 1 of their article introduces a solid online resource for taking retrocomputing to the next level–the N8VEM Google group, which provides a single-board CP/M design meant to engage others.

This is the N8VEM in its $20 stand-alone incarnation.

“N8VEM is not about soldering kits. It is about joining in, trying new things, and picking up skills along the way. These skills range from reading schematics to debugging a computer card that does not operate as intended. The learning curve may be steep at times, but, because the N8VEM mail group is very active, expert help is available if or when you get stuck….

“As the novelty of designing a simple single-board computer (SBC) wears off, you may prefer to focus your energy on exploring graphics systems or ways to hook up 8-bit machines on the Internet. Or, you may want to jump into systems software development and share your experiences with a few hundred others.

“Retrocomputing is not always backward-facing. Making  ‘Frankenstein’ systems by adding modern Parallax Propeller chips or FPGAs to old hardware is a nice way to gain experience in modern digital electronics, too.”

For more, check out the July issue of Circuit Cellar for Part 1 of their series. In Part 2, scheduled for publication in August,  the authors provide a technical look at the N8VEM’s logic design. It also provides a starting point for anyone interested in exploring the N8VEM’s system software and expansion hardware, according to Vermeulen and Lynch.

 

 

CC275: Shape The Future

In January, Circuit Cellar introduced a new section, Tech the Future, which dedicates page 80 of our magazine to the insights of innovators in groundbreaking technologies.

We’ve reached out to a number of graduate students, professors, researchers, engineers, designers, and entrepreneurs, asking them to write short essays on their fields of expertise, with an emphasis on future trends.

Their topics have included high-speed data acquisition, Linux home automation, research into new materials to replace traditional silicon-based CMOS for circuitry design, control system theory for electronic device DIYers, and how open-source hardware will make world economies more democratic and efficient.

Our contributors have been diverse in more than just their topics. They have been talented

Tech the Future essayist Fergus Dixon designed this DNA sequencer, the subject of an article in the May 2013 issue of Circuit Cellar.

young researchers and seasoned professionals. Male and female. American, Portuguese, Italian, Indian, and Australian.

The one thing they have in common? They keep a close eye on the ever-changing landscape of technological change. And their essays have helped our readers focus on what to watch. We compensate authors for the essays we choose to publish, and we are eager to hear your suggestions on subjects for Tech the Future.

If you are an innovator interested in writing an essay for Tech the Future, e-mail me (editor@circuitcellar.com) with the topic you’d like to address and some information about yourself. If you are a reader who wants to hear from someone in particular through Tech the Future or has a suggestion for an essay topic, please contact me.

The work of those we’ve featured so far can be found online at circuitcellar.com/category/tech-the-future. Here are just a few of the innovators you will find there:

Maurizio Di Paolo Emilio, a designer of data acquisition software for physics-related experiments and industrial applications, discussing the future of data acquisition technology.

Saptarshi Das, a nano materials researcher who holds a PhD in Electrical Engineering from Purdue University, focusing on the urgent need for alternatives to silicon-based CMOS. These alternative materials, now the subject of extensive scientific research, will be game changers for the microelectronics and nanoelectronics industries, he says.

Fergus Dixon, an Australian entrepreneur and designer of the popular software program “Simulator for Arduino,” explaining why open-source hardware is a valuable tool in the development of new medical devices. Design opportunities for such devices are countless. Hot technologies developed for 3-D printing and unmanned aerial vehicles (UAVs) have direct medical applications, including 3-D-printed prosthetic ears and nanorobots that utilize UAV technology.

Enjoy these articles and others online. In the meantime, I’ll be checking my e-mail for what you would like to see featured in Tech the Future.