Design West Update: Intel’s Computer-Controlled Orchestra

It wasn’t the Blue Man Group making music by shooting small rubber balls at pipes, xylophones, vibraphones, cymbals, and various other sound-making instruments at Design West in San Jose, CA, this week. It was Intel and its collaborator Sisu Devices.

Intel's "Industrial Controller in Concert" at Design West, San Jose

The innovative Industrial Controller in Concert system on display featured seven Atom processors, four operating systems, 36 paint ball hoppers, and 2300 rubber balls, a video camera for motion sensing, a digital synthesizer, a multi-touch display, and more. PVC tubes connect the various instruments.

Intel's "Industrial Controller in Concert" features seven Atom processors 2300

Once running, the $160,000 system played a 2,372-note song and captivated the Design West audience. The nearby photo shows the system on the conference floor.

Click here learn more and watch a video of the computer-controlled orchestra in action.

Design West Update: Compilers Unveiled

IAR Systems announced Tuesday at Design West in San Jose, CA, that GainSpan selected IAR Embedded Workbench as its primary development tool chain for MCU drivers and next-generation chip. “By standardizing on IAR Systems’ embedded software development tool chain, GainSpan will more easily support a wide range of MCUs to communicate with their modules,” IAR publicized a in a release.

It’s an important aspect of a larger plan, IAR’s ARM Strategic Accounts Manager Mike Skrtic said. IAR has overall tool chain standardization goals aimed at giving designers’ more flexibility when choosing MCUs for product development.

Remember: IAR Systems is teamed with Renesas for the RL78 Green Energy Challenge, which is administered by Circuit Cellar and Elektor. Designers are challenged to transform how the world experiences energy efficiency by developing a unique, low-power application using the RL78 MCU and IAR toolchain.

In other compiler-related news, Microchip Technology announced Monday at Design West its new MPLAB XC C compiler line, which supports its approximately 900 microcontrollers. Microchip’s Joe Drzewiecki said the compilers reduce code size by about 35% and improve code execution speed by about 30%. But you can judge for yourself because Microchip offers 8-, 16-, and 32-bit free editions of MPLAB XC compilers. According to Microchip reps, they are” fully functional and have no license restrictions for commercial use.”

So, if you give MPLAB XC a try, let us know what you think!

Q&A: Dave Jones (Engineer, EEVBlog)

Are you an electrical engineer, hacker, or maker looking for a steady dose of reliable product reviews, technical insight, and EE musings? If so, Dave Jones is your man. The Sydney, Australia-based engineer’s video blog (EEVblog) and podcast (The Amp Hour, which he co-hosts with Chris Gammell) are quickly becoming must-subscribe feeds for plugged-in inquisitive electronics enthusiasts around the world.

Dave Jones: engineer, video blogger, and podcaster

The April issue of Circuit Cellar features an interview with Jones, who describes his passion for electronics, reviewing various technologies, and his unscripted approach to video blogging and podcasting. Below is an abridged version of the interview.

David L. Jones is a risk taker. In addition to jumping off cliffs in the name of product testing, the long-time engineer recently switched to full-time blogging. In February 2012, Dave and I discussed his passion for electronics, his product review process, and what it means to be a full-time video blogger.—Nan Price, Associate Editor

NAN: When did you first start working with electronics?

DAVE: The video story can be found at “EEVblog #54 – Electronics – When I was a boy…” www.youtube.com/watch?v=XpayYlJdbJk. I was very young, maybe six or so, when I was taking apart stuff to see how it worked, so my parents got me a 50-in-1Tandy (RadioShack) electronics kit and that was it, I was hooked, electronics became my life. And indeed, this seems to be fairly typical of how many engineers of the era got started.

By the time I was eight, I already had my own lab and was working on my own projects. All my pocket money went into tools, parts, and magazines.

The electronics magazine industry was everything back then before the Internet and communications revolution. I would eagerly await every issue of the Australian electronics magazines like Electronics Australia, Electronics Today International (ETI), Applied and Australian Electronics Monthly (AEM), Talking Electronics, and later Silicon Chip.

NAN: Tell us about some of your early projects.

DAVE: Given that it was over 30 years ago, it’s hard to recall I’m afraid. Unfortunately, I just didn’t think to use a (film) camera back then to record stuff, it just wasn’t something that you did as a kid. The family camera only came out on special occasions. So those projects have been lost in the annals of time.

My first big published magazine project was a digital storage oscilloscope (DSO) adapter for PCs, in a 1993 issue of Electronics Australia. I originally designed this in the late 1980s. (See “electronics.alternatezone.com, http://alternatezone.com/electronics/dsoa.ht.)

NAN: You have many interests and talents. What made you choose engineering as your full-time gig?

DAVE: There was no choice, electronics has been my main hobby since I can remember, so electronics engineering was all I ever wanted to do to. I’ve branched out into a few other hobbies over the years, but electronics has always remained what I’ve wanted to do.

NAN: The Electronics Engineering Video Blog—EEVBlog—is touted as “an off-the-cuff video blog for electronics engineers, hobbyists, hackers, and makers.” Tell us about EEVBlog and what inspired you to begin it.

DAVE: I’ve always been into sharing my electronics, either through magazines, via my website, or on newsgroups, so I guess it’s natural that I’d end up doing something like this.

In early 2009 I saw that (WordPress-type) blogs were really taking off for all sorts of topics and some people were even doing “video blogs” on YouTube. I wondered if there were any blogs for electronics, and after a search I found a lot of text-based blogs, but it seemed like no one was doing a video blog about electronics, like a weekly show that people could watch … So I thought it’d be fun to do an electronics video blog and blaze a new trail and see what happened.

Being fairly impulsive, I didn’t think about it much; I just dusted off a horrible old 320 × 240 webcam, sat down in front of my computer, and recorded 10 minutes (the YouTube limit back then) of whatever came into my head. I figured a product review, a book review, a chip review, and some industry news was a good mix … I’ve had constant linear growth since then, and now have a regular weekly audience of over 10,000 viewers and over 4 million views on YouTube. Not to mention that it’s now my full-time job.

The complete April issue of Circuit Cellar is now available. For more information about Dave Jones, his video blog, and podcast, visit www.eevblog.com and www.theamphour.com.

Design West Update: Advanced 8-Bit MCUs

Is the 8-bit MCU dead? No. And if you take a look at Microchip Technology’s PIC16F(LF)178x family, it’s clear that it will be around for a long time to come.

Microchip Technology announced Monday from Design West in San Jose, CA, that it “expanded its 8-bit PIC16F(LF)178X midrange core MCU family to include advanced analog and integrated communication peripherals, such as on-chip 12-bit analog-to-digital converters (ADCs), 8-bit digital-to-analog converters (DACs), operational amplifiers, and high-speed comparators, along with EUSART (including LIN), I2C, and SPI interface peripherals.”

Microchip claims the low power consumption and advanced analog and digital integration make the MCUs (28- and 40-pin packages) well suited for lighting (LED), battery management, motor control, and more.

Check out the specs and more details at www.microchip.com/pagehandler/en-us/family/8bit/.

Renesas RL78 Green Energy Challenge

Up for an international design challenge? It’s time for the Renesas RL78 Green Energy Challenge! Renesas has partnered with IAR Systems to deliver engineers a power-house combo of low-power devices and high-quality software. They’re steering a great, green revolution and are challenging you to transform how the world experiences energy efficiency by developing a unique, low-power application using the RL78 MCU and IAR toolchain. Succeed and win a share of $17,500 in Grand Prizes from Renesas! * The Renesas Grand Prize winner will also win a free trip to Renesas DevCon in October where winners will be announced.

But that’s not all. Earn additional prizes like developments tools, Pmods, Wi-Fi modules, embedded systems books, and more from Contest Partners through weekly prize drawings. Follow Renesas on Twitter and Facebook for weekly challenge questions from official Contest Partners. Weekly Partner Challenges, and the respective winners, will be announced every Monday throughout the competition.

So, do you have a great idea for a remote device that monitors pollution? What about a box collecting data on home power usage or an energy harvesting biometric design? Perhaps your grand plan is for a low power controller scavenging heat from an oven or furnace, a meter reading biomass parameters, or a braking system for a wind turbine? It’s up to you! Send us your best RL78 based ideas to help make the world a better place.

The Challenge starts March 26, 2012 and ends on August 31, 2012. Winners will be announced in October at Renesas’ DevCon 2012.

Hundreds of free RL78/G13 development kits (“RDK”s), loaded with IAR’s Kickstart edition, are being distributed to those who qualify. Click here to see if you qualify for a complimentary RDK!

*Prizes in U.S. dollars.

Circuit Cellar, Inc. and Elektor International Media is the Contest Administrator.