Elektor RF & Microwave App for Android

Elektor has an iPhone/iPad app for several months. And now Android users can have an Elektor app of their own. The Elektor RF & Microwave Toolbox app is perfect for engineers and RF technicians who need easy, reliable access to essential equations, converters, calculators, and tools.

A screenshot of the Elektor RF & Microwave app for Android

The app includes the following handy tools:

1.Noise floor (Kelvin,dBm)
2.Amplifier cascade (NF, Gain, P1db, OIP2, OIP3)
3.Radar equation (2-way path loss)
4.Radio equation (1-way path loss)
5.Power and voltage converter (W,dBm,V,dBµV)
6.Field intensity and power density converter (W/m2, V/m, A/m, Tesla, Gauss,dBm, W)
7.Mismatch error limits (VSWR, Return loss)
8.Reflectometer (VSWR, Return loss)
9.Mitered Bend
10.Divider and Couplers (Wilkinson, Rat race, Branchline , microstrip and lumped)
11.Balanced and und balanced PI and T attenuator
12.Skin depth (DC and AC resistance)
13.PCB Trace calculator (impedance/dimensions)
14.Image rejection (amplitude and phase imbalance)
15.Mixer harmonics (up and down conversion)
16.Helical antenna
17.Peak to RMS (peak, RMS, average, CF)
18.Air Core Inductor Inductance
19.Parallel plate Capacitor
20.PI and T attenuator
21.Ohm’s Law
22.Parallel LCR impedance/resonance
23.Series LCR impedance/resonance
24.Inductor impedance
25.Capacitance impedance
26.Antenna temperature (Kelvin)
27.Radar Cross Section (RCS) calculator (Sphere,Cylinder, flat plate, corners, dBsm)
28.Noise Figure Y-Factor Method
29.EMC (EIRP, ERP, dBµV/m)
30.Noise figure converter (dB, linear, Kelvin)
31.Frequency Band Designations
32.Resistor color code (reverse lookup, 3 to 6 band)
33.Filter Design (Butterworth, Chebyshev, prototype):
34.µ-Filter Design (microstrip, stripline)
35.PCB Trace Width and Clearance Calculator

Visit the Android Market for more information about the Elektor app.

Circuit Cellar does not yet have an app for Android. The Circuit Cellar iPhone/iPad app is available on iTunes.

Screenshots of the Circuit Cellar app

Elektor International Media is the parent company of Circuit Cellar.

Issue 260: EQ Answers

These are the answers to the EQ questions that appeared in Circuit Cellar 260 (March 2012).

Problem 1—In an RS-232 interface, why is the idle or “mark” level a negative voltage?

Answer 1—RS-232 was developed in the days when people were connecting electromechanical teletypes to telephone lines with modems, and in fact, at that time the design of any equipment connected to a phone line was tightly controlled by the phone company.

The reason RS-232 uses a negative voltage for its idle state is the same reason the phone lines themselves use a negative voltage relative to ground for power—copper wires in long cables potentially exposed to moisture are significantly less likely to corrode if they have a negative DC bias on them.

Problem 2—Similarly, why does the “mark” level correspond to a logical “high” level on the TTL side of the interface?

Answer 2—Again, back in the days when RS-232 was developed, the primary logic families in use were DTL and TTL. Both of these technologies draw significantly less power when a signal is in the high state than in the low state, so the high state is preferred for the inactive state of any signal.

Problem 3—What does the following C function compute? You may assume the input argument is a positive integer.

Answer 3—Remember the algorithm that computes integer square roots by subtracting successive odd numbers from the input value? This function extends that concept to computing integer cube roots.

The reason this works is that taking the differences between successive values is the discrete equivalent of taking a derivative in the continuous world. The derivative of a cubic curve is a quadratic, and the derivative of a quadratic is a straight line. To generate a “straight line” in the discrete world, you just add a constant to a variable.

When you look at successive squares—0, 1, 4, 9, 16, 25, etc.—the differences are 1, 3, 5, 7, 9, etc. This is why the algorithm that subtracts odd numbers works for computing square roots.

When you look at the successive cubes—0, 1, 8, 27, 64, 125, etc.—the first set of differences is the sequence 1, 7, 19, 37, 61, etc. This doesn’t look very useful until you take the differences between those numbers, which are: 6, 12, 18, 24, etc., which is obviously another straight line.

Problem 4—Suppose you are given some calibration constants for a sensor in the form of four-digit hexadecimal (16-bit) integers, and you are told that the format of these numbers is “7 integer bits and 9 fractional bits.” How would you go about converting these constants to floating-point so that you could, for example, work with them in a spreadsheet?

Answer 4—The direct way to convert numbers in an arbitrary fixed-point representation to the equivalent floating-point value is to figure out what the representation for “1.000” would be in the fixed-point notation and then divide the given numbers by that constant.

In this case, with 7 integer bits and 9 fraction bits, “1.000” would be represented as binary 0000001.000000000, or 0x0200. So, if you are given a constant of, say, 0x5453, just divide it by 0x0200 to find out that it represents the value “42.162.”

Contributed by David Tweed (eq at circuitcellar.com)

Issue 260: Creativity in Design

The seed for the interview with Hanno Sander on page 16 (Circuit Cellar March 2012) was sown at the 2008 Embedded Systems Conference in San Jose, CA. Hanno was at the Parallax booth demonstrating his “Dancebot,” which is a Propeller-based, two-wheeled balancing robot he wrote about in Circuit Cellar 224 (March 2009).

Balancing robot design (Source: Hanno Sander CC260)

Since Circuit Cellar is scheduled to publish Hanno’s book Advanced Control Robotics later this year, it made sense to interview him for our annual Robotics issue. As you’ll learn, Hanno is an enthusiastic designer whose intellect and passion for engineering have enabled him to travel the world and make electronics innovation his life’s work. His story should be an inspiration to everyone who reads this magazine.

After you finish the interview, check out the two robotics-related articles featured in this issue.

Square playing field (Source: Larry Foltzer CC260)

First, on page 20, Larry Foltzer tackles the topic of robot navigation with a fascinating article about position determination and acoustic delay triangulation. Next, turn to the back of the issue for Jeff Bachiochi’s article, “Wheel-Free Mobile Robots” (p. 64). Jeff takes you inside a Freescale FSLBOT mechatronics robot. Study the concepts he covers to prepare yourself for your next mobile robot design.

The rest of the issue includes a variety of articles on creative designs and essential engineering topics. I’m sure you’ll agree that the following articles are just as inspirational as they are informative.

Engineer and video game enthusiast Chris Cantrell explains how he built a Propeller-based TV gaming platform (p. 28). He describes how he hacked a joystick and got the classic Space Invaders video game up and running.

Propeller-based gaming platform (Source: Chris Cantrell CC260)

On page 36, Charles Edmondson presents his Rainbow Color Reader. The compact design can identify and announce colors for visually impaired users.

In the February issue, Alexander Pozhitkov introduced the NakedCPU project. This month he wraps up the article series by describing actual experiments and sets the foundation for future research (p. 42).

On page 50, George Novacek helps you prepare for the inevitable: microelectronic component obsolescence. You’ll find his tips invaluable as you move on to new projects.

Interested in the topic of thermal detection? Want to know how IR thermal sensing works? Turn to Richard Wotiz’s article on page 54.

On page 60, columnist George Martin provides his next engineering lesson learned from a real-world project. This month he covers the topic of working with—or without?—printer port connections.

I’d like to wrap up with a note to our staff and long-time readers. This is the 260th issue of Circuit Cellar. That’s quite an achievement! Thank you, colleagues, friends, and readers!

Circuit Cellar Issue 260 March 2012

Voice Coil Parts & Production

Voice coils are essential elements in loudspeakers of all sorts. Thus, understanding how a voice coil works is essential for audio engineers and DIYers alike. The main parts the bobbin, the voice coil wire, and the collar. Mike Klasco and Steve Tatarunis of Menlo Scientific provide in-depth information about voice coils in the March 2012 issue of audioXpress magazine.

The parts of a voice coil (Source: Precision Econowind)

Klaso and Tatarunis write:

“The bobbin provides a rigid structure on which the voice coil wire can be wound and the collar can serve several purposes. It secures the coil lead-out wires, reinforces the bobbin, and provides a convenient material for diaphragm attachment … In some cases—headphone speakers, for example—a monolithic (self supporting no bobbin or collar) voice coil may be used. But this article will focus on the more commonly used bobbin, coil, and collar designs.

Loudspeaker voice coils are seldom considered critical elements that contribute to sound quality, and few technical papers have addressed this issue. But when designing a voice coil, the selection and application of materials can have profound effects upon sound quantity, quality, and power handling. The mechanical energy from the winding stack moves by transconduction through the bobbin and collar before reaching the diaphragm. Any non-linearities in this path are superimposed upon the response of the speaker. Intrinsic characteristics of materials such as internal damping and Young’s modulus create specific sonic signatures and contribute to the residual distortion spectrum of the transducer … In selecting a particular material, a coil winder makes important trade-offs on the winding process. Knowledge of these variables can ensure better, more cost-effective coils, avoid conflicts, and improve production yields. Torsional resonances, internal losses, and electrical conductivity of the bobbin materials are some of the factors effecting the distortion, sensitivity, and sound quality of the finished loudspeaker.”

A close-up view of both a good voice coil and a burned voice coil (Source: The Speaker Exchange)

You can read the entire article here. For subscription information, go to www.audioamateur.com.

audioXpress magazine, like Circuit Cellar, is an Elektor group publication.


Q&A: Hanno Sander on Robotics

I met Hanno Sander in 2008 at the Embedded Systems Conference in San Jose, CA. At the time, Hanno was at the Parallax booth demonstrating a Propeller-based, two-wheeled balancing robot. Several months later, we published an article he wrote about the project in issue March 2009. Today, Hanno runs HannoWare and works with school systems to improve youth education by focusing technological innovation in classrooms.

Hanno Sander at Work

The March issue of Circuit Cellar, which will hit newsstands soon, features an in-depth interview with Hanno. It’s an inspirational story for experienced and novice roboticists alike.

Hanno Sander's Turing maching debugged with ViewPort

Here’s an excerpt from the interview:

HannoWare is my attempt to share my hobbies with others while keeping my kids fed and wife happy. It started with me simply selling software online but is now a business developing and selling software, hardware, and courseware directly and through distributors. I get a kick out of collaborating with top engineers on our projects and love hearing from customers about their success.

Our first product was the ViewPort development environment for the Parallax Propeller, which features both traditional tools like line-by-line stepping and breakpoints as well as real-time graphs of variables and pin I/O states to help developers debug their firmware. ViewPort has been used for applications ranging from creating a hobby Turing machine to calibrating a resolver for a 6-MW motor. 12Blocks is a visual programming language for hobby microcontrollers.

The drag-n-drop style of programming with customizable blocks makes it ideal for novice programmers. Like ViewPort, 12Blocks uses rich graphics to help programmers understand what’s going on inside the processor.

The ability to view and edit the underlying sourcecode simplifies transition to text languages like BASIC and C when appropriate. TBot is the result of an Internetonly collaboration with Chad George, a very talented roboticist. Our goal for the robot was to excel at typical robot challenges in its stock configuration while also allowing users to customize the platform to their needs. A full set of sensors and actuators accomplish the former while the metal frame, expansion ports, and software libraries satisfy the latter.

Click here to read the entire interview.


Zero-Power Sensor (ZPS) Network

Recently, we featured two notable projects featuring Echelon’s Pyxos Pyxos technology: one about solid-state lighting solutions and one about a radiant floor heating zone controller. Here we present another innovative project: a zero-power sensor (ZPS) network on polymer.

The Zero Power Switch (Source: Wolfgang Richter, Faranak M.Zadeh)

The ZPS system—which was developed by Wolfgang Richter and Faranak M. Zadeh of Ident Technology AG— doesn’t require battery or RF energy for operation. The sensors, developed on polymer foils, are fed by an electrical alternating field with a 200-kHz frequency. A Pyxos network enables you to transmit of wireless sensor data to various devices.

In their documentation, Wolfgang Richter and Faranak M. Zadeh write:

“The developed wireless Zero power sensors (ZPS) do not need power, battery or radio frequency energy (RF) in order to operate. The system is realized on polymer foils in a printing process and/or additional silicon and is very eco-friendly in production and use. The sensors are fed by an electrical alternating field with the frequency of 200 KHz and up to 5m distance. The ZPS sensors can be mounted anywhere that they are needed, e.g. on the body, in a room, a machine or a car. One ZPS server can work for a number of ZPS-sensor clients and can be connected to any net to communicate with network intelligence and other servers. By modulating the electric field the ZPS-sensors can transmit a type of “sensor=o.k. signal” command. Also ZPS sensors can be carried by humans (or animals) for the vital signs monitoring. So they are ideal for wireless monitoring systems (e.g. “aging at home”). The ZPS system is wireless, powerless and cordless system and works simultaneously, so it is a self organized system …

The wireless Skinplex zero power sensor network is a very simply structured but surely functioning multiple sensor system that combines classical physics as taught by Kirchhoff with the latest advances in (smart) sensor technology. It works with a virtually unlimited number of sensor nodes in inertial space, without a protocol, and without batteries, cables and connectors. A chip not bigger than a particle of dust will be fabricated this year with the assistance of Cottbus University and Prof. Wegner. The system is ideal to communicate via PYXOS/Echelon to other instances and servers.

Pyxos networks helps to bring wireless ZPS sensor data over distances to external instances, nets and servers. With the advanced ECHELON technology even AC Power Line (PL) can be used.

As most of a ZPS server is realized in software it can be easily programmed into a Pyxos networks device, a very cost saving effect! Applications start from machine controls, smart office solutions, smart home up to Homes of elderly and medical facilities as everywhere else where Power line (PL) exists.”

Inside the ZPS project (Source: Wolfgang Richter, Faranak M.Zadeh)

For more information about Pyxos technology, visit www.echelon.com.

This project, as well as others, was promoted by Circuit Cellar based on a 2007 agreement with Echelon.

Robot Nav with Acoustic Delay Triangulation

Building a robot is a rite of passage for electronics engineers. And thus this magazine has published dozens of robotics-related articles over the years.

In the March issue, we present a particularly informative article on the topic of robot navigation in particular. Larry Foltzer tackles the topic of robot positioning with acoustic delay triangulation. It’s more of a theoretical piece than a project article. But we’re confident you’ll find it intriguing and useful.

Here’s an excerpt from Foltzer’s article:

“I decided to explore what it takes, algorithmically speaking, to make a robot that is capable of discovering its position on a playing field and figuring out how to maneuver to another position within the defined field of play. Later on I will build a minimalist-like platform to test algorithms performance.

In the interest of hardware simplicity, my goal is to use as few sensors as possible. I will use ultrasonic sensors to determine range to ultrasonic beacons located at the corners of the playing field and wheel-rotation sensors to measure distance traversed, if wheel-rotation rate times time proves to be unreliable.

From a software point of view, the machine must be able to determine robot position on a defined playing field, determine robot position relative to the target’s position, determine robot orientation or heading, calculate robot course change to approach target position, and periodically update current position and distance to the target. Because of my familiarity with Microchip Technology’s 8-bit microcontrollers and instruction sets, the PIC16F627A is my choice for the microcontrollers (mostly because I have them in my inventory).

To this date, the four goals listed—in terms of algorithm development and code—are complete and are the main subjects of this article. Going forward, focus must now shift to the hardware side, including software integration to test beyond pure simulation.

A brief survey of ultrasonic ranging sensors indicates that most commercially available units have a range capability of 20’ or less. This is for a sensor type that detects the echo of its own emission. However, in this case, the robot’s sensor will not have to detect its own echoes, but will instead receive the response to its query from an addressable beacon that acts like an active mirror. For navigation purposes, these mirrors are located at three of the four corners of the playing field. By using active mirrors or beacons, received signal strength will be significantly greater than in the usual echo ranging situation. Further, the use of the active mirror approach to ranging should enable expansion of the effective width of the sensor’s beam to increase the sensor’s effective field of view, reducing cost and complexity.

Taking the former into account, I decided the size of the playing field will be 16’ on a side and subdivided into 3” squares forming an (S × S) = (64 × 64) = (26, 26) unit grid. I selected this size to simplify the binary arithmetic used in the calculations. For the purpose of illustration here, the target is considered to be at the center of the playing field, but it could very well be anywhere within the defined boundaries of the playing field.

Figure 1: Squarae playing field (Source: Larry Foltzer CC260)

Referring to Figure 1, the corners of the square playing field are labeled in clockwise order from A to D. Ultrasonic sonar transceiver beacons/active mirrors are placed at three of the corners of the playing field, at the corners marked A, B, and D.”

The issue in which this article appears will available here in the coming days.

Living & Working Off the Grid

Interested in engineering your own solar panel system installation? If so, you’ve likely begun researching photovoltaic technology, construction materials, and test equipment on the Internet. Have you been satisfied with the information you’ve found? Probably not. There’s simply a scarcity of reliable electronics engineering advice out there about serious solar panel installation projects. Enter Circuit Cellar. Over the past several years, we’ve published articles by professional engineers about their own installations.

Three panels are wired in series and run into the MPPT controllers. Their capacity is 170 W each, 510 W total, to charge the batteries and put off running the generator. (Source: George Martin CC218)

So, before you get sidetracked with another 3-minute video or bullet-point tutorial, do yourself a favor and read columnist George Martin’s two-part article series “Living and Working Off the Grid.” Here’s an excerpt from Part 1:

“First, I’m an engineer—and an electrical one at that (except my degree is so old that it reads “DC ONLY!”). In addition, my neighbors in New Mexico already have systems up and running. Jeff and Pat live up the road in a handmade log home. Jeff is a former engineer for General Motors (Pontiac GTO, Avanti, and Saturn to his credit). That makes for some interesting discussions about how electronics will revolutionize the car industry, but I digress. He’s a mechanical engineer who doesn’t fully embrace all of this electrical stuff. He has a minimal system with four panels of about 150 W each. Another neighbor’s system has about 3 kW of panels. Armed with the idea that it could be done, I started to match up equipment with our requirements.

The equipment I selected falls into four main categories: solar panels, inverters, charge controllers, and batteries. In fact, you could consider each independently and not get too far off an ideal system. There are, however, some areas of concern when mating equipment from different manufactures, so I stayed with one manufacturer for the control devices.


Solar panels convert solar energy into electrical energy. Again, there is a lot of literature available about how this is accomplished. But what about some hard code conversion details? Standard test conditions require a temperature of 25°C and an irradiance of 1,000 W/m² with an air mass of 1.5 (AM1.5) spectrum. They correspond to the irradiance and spectrum of sunlight incident on a clear day on a sun-facing 37° tilted surface with the sun at an angle of 41.81° above the horizon. This condition approximately represents solar noon near the spring and autumn equinoxes in the continental U.S. with the surface of the cell aimed directly at the sun. Thus, under such conditions, a solar cell with a 12% efficiency and a 100 cm2 (0.01 m2) surface area can be expected to produce approximately 1.2 W of power.[1] This gives you an idea of what’s involved in rating and selecting solar panels. Look at the University of Western New Mexico’s weather site for solar radiation and you’ll get a feeling for the actual solar radiation for the area.

There is another consideration when selecting a panel, namely cost per watt. If you start looking, you will find panels of different wattages and different prices. In March 2004, I started a spreadsheet listing panels from 125 to 195. Note pricing from March 2004, purchased equipment in 2005, installed in 2006–2007, and operational in October 2007. Then, I added the costs different suppliers were charging for each panel and calculated a price/watt number.

My results range from $4.35 to $4.76 per watt. I estimated that I would need 3,000 W of panels, and came up with $13,320 for the cost of the BP Solar SX 170B.

More polysilicon is currently being used in solar panel manufacturing than all other usages combined, so this is big business. It also seems that the larger-power-rating panels command a higher price per watt. It is sort of like the CPU business where chips are speed graded and priced accordingly.

My cost estimates are a bit old, so you’ll need to run the numbers with today’s prices. Let me add that I found solar panels to be in tight supply, so when you begin your design, look to secure the panels at a good price early in the game.

The 3,000 W in my design was derived from the sun’s availability in the winter. Figure 2 represents the solar radiation for an actual cloudless winter day.

Figure 2: The actual solar radiation recorded by Western New Mexico University in Silver City about 30 miles to the west of the house site. (Source: George Martin CC 216)

The peak radiation is 600 W/m2. Let’s estimate that the shape of the curve is a sine function so that the area under the curve is its average value (2/pi, or 0.6366 times the peak value) multiplied by its width. So, that is 600 W/m2 × 0.6366 × 8 h (9 A.M. to 5 P.M.), or 3,055.7 Wh/m2. Therefore: Close to 10 kWh per day is good enough for the workshop, but not enough for the house when it’s built. And 3 kW of panels is what one neighbor is using.

We also need to account for cloudy days. The energy to run the workshop would need to come from the battery or backup generator. Another concern is hot summer days when the panel efficiency drops because of the heat. But the days are longer in the summer. Actually, it’s still a 24-hour day, but there is more available sunlight each day. I don’t have test results for summer generation (because I’m writing this in February 2008 after getting the system put together in October 2007), so stay tuned. The last point to watch out for in panel selection is cold weather open-circuit voltage going into the charge controller.

In the cold, with no current drawn, the open-circuit voltage of the solar panel will rise. If several panels are connected in series (for efficiency), this voltage may damage the input to the charge controller. This is a well-known situation and your equipment dealer will be able to guide you in this area.


I must confess that I find inverters boring. They are not as exciting as solar panels, charge controllers, or even batteries. I thought I would not find much difference in available inverters and that probably was due to my lack of enthusiasm. I selected inverters from OutBack Power Systems. I wanted the inverter/charge controller combination to be from one manufacturer. As I looked at the literature, OutBack seemed to have covered all of the issues for my installation. I ended up with two OutBack VFX3648 inverters (see Photo 2).

Photo 2: The placement of the Outback System next to the feed into the normal house distribution panel. (Source: George Martin CC216)

They are 3.6 kW (continuous) with connections for a 48-V battery and vented. You will find vented and sealed inverters. I selected vented because they typically have a larger power rating and I’m not in a harsh environment.

Also, the inverters are located in an area that is protected from the elements. Another option is a fan on the inverter. The fan also gives you more capacity, but what will you do when the fan fails, and you know it will? Our system is a normal 220-V home application. So, there are two inverters, one for each phase. OutBack has a neat option that includes a transformer to supply the second phase so the second inverter can remain in a low-power operating mode. When the power requirements become large enough, the main inverter will signal the second (slave) inverter to start up and handle the increased load. This is a good setup for our application. We can install a normal commercial heating/cooling system and power up only the second inverter when the load is calling for it.

Click here to read the entire article series.


Radiant Floor Heating Zone Controller Project

Even if you aren’t interested in designing a radiant floor zoned heating system, you can study this innovative project and apply what you learn to any number of building control and automation applications. Dalibor Zaric’s Radiant Floor Heating Zone Controller is built around an NXP Semiconductors LPC2134 ARM processor that’s connected to an Echelon Pyxos chip. The project won Second Place in Echelon’s 2007 “Control Without Limits” design competition.

The heat zone controller system (Source: Echelon & Dalibor Zaric)

Zaric provides the following details in his project documentation:

“• Power supply to unit is 24VAC and controller has switching power supply to provide 24VDC for Pyxos network as well 5V for logic, there is 3.3V linear regulator as well.

• There are four relay with 24VAC output to power up thermoelectric zone valve on radiant floor heating manifold. These outputs are protected with 1.85A self resetting fuse to prevent overloading. This block has as well 24VAC/DC dry contact to provide a call for heat to boiler or optional zones pump.

• Pyxos power supply filter and Pyxos chip provides Pyxos network connection for future sensors and thermostats. Pyxos thermostat will be more cost effective than regular LONWorks sensors/thermostats.

• RS-485 driver will provide future Modbus connection for local touch screens or smart home systems with Modbus connections. There is end of line resistors enabled with the dip switches beside connector.

• 3150 Neuron board with 64K flash provides LONWorks connection to the controller.”


The heat zone controller diagram (Source: Echelon & Dalibor Zaric)

For more information about Pyxos technology, visit www.echelon.com.

This winning project, as well as others, was promoted by Circuit Cellar based on a 2007 agreement with Echelon.


Issue 258: EQ Answers

These are the answers to the EQ questions that appeared in Circuit Cellar 258(January 2012).

Answer 1—Q1 and Q2 are wired as a differential amplifier, but in this digital application, it’s probably better to think of them as a current switch. Whenever VIN < VTH, the current through R1 is shunted to ground, and whenever VIN > VTH, the current passes instead through Q2 to the base of Q3, turning it on. As long as Q1 and Q2 are reasonably well matched, VTH is the input voltage at which the switchover occurs, and this is relatively stable with respect to temperature. For example, if VIN is being driven by standard TTL logic, you might set VTH to 1.5 V.

Answer 2—R1, combined with VTH, sets the amount of current flowing through Q2 to drive the base of Q3. This current should be sufficient to drive Q3 into saturation, given the expected load on it (R3 plus the external circuit). R2 serves to make sure that Q3 isn’t turned on by any leakage current through Q2 when it’s supposed to be off. For example, a value of 100 kΩ would bypass currents of up to 6 µA or so.

Answer 3—When VIN is high, there is virtually no current flowing through the input terminal—just the leakage current through Q1’s base-collector junction. When VIN is low, the driving circuit must sink the current set by R1 divided by the beta (current gain) of Q1. For example, if R1 is 4,300 Ω, giving a current through Q1 of about 1 mA, and the beta of Q1 is 50, then the driving circuit must sink about 20 µA.

Answer 4—Better: The component count is reduced by one transistor. Better: VTH is stabilized by the forward drop of a diode, making it less dependent on the exact value of the positive supply. Worse: The switching voltage is now determined by the combination of D1 and the base-emitter drop of Q2, both of which vary with temperature. Worse: Now the driving circuit must supply all of the base current for Q3 when it is in the high state.

Contributed by David Tweed (eq at circuitcellar.com)

Solid-State Lighting Solutions Project

Electronics system control, “green design,” and energy efficiency are important topics in industry and academia. Here we look at a project from San Jose-based Echelon Corp.’s 2007 “Control Without Limits” design competition. Designers were challenged to implement Pyxos technology in innovative systems that reduced energy consumption. Daryl Soderman and Dale Stepps (of INTELTECH Corp.) took First Prize for their Solid State Lighting Solutions project.

The Pyxos chip is on the board (Source: Echelon & Inteltech)

So, how does it work? Using the Pyxos FT network protocol, this alternative lighting project is a cost-effective, energy-efficient solution that’s well-suited for use in residential, commercial, or public buildings. You can easily embed the LED lighting and control system—which features SSL lighting, a user interface, motion detectors, and light sensors—in an existing network. In addition, you can control up to five zones in a building by using the system’s fully programmable ESB-proof touchpad.

Another view of the Pyxos chip is on the board (Source: Echelon & Inteltech)


For more information about Pyxos technology, visit www.echelon.com.

This winning project, as well as others, was promoted by Circuit Cellar based on a 2007 agreement with Echelon.




RFI Bypasssing

With GPS technology and audio radio interfaces on his personal fleet of bikes, Circuit Cellar columnist Ed Nisley’s family can communicate to each other while sending GPS location data via an automatic packet reporting system (APRS) network. In his February 2012 article, Ed describes a project for which he used a KG-UV3D radio interface rigged with SMD capacitors to suppress RF energy. He covers topics such as test-fixture measurements on isolated capacitors and bypassing beyond VHF.

Photo 2 from the Febuary article, "RFI Bypassing (Part 1)." A pair of axial-lead resistors isolate the tracking generator and spectrum analyzer from the components under test. The 47-Ω SMD resistor, standing upright just to the right of the resistor lead junction, forms an almost perfect terminator. (Source: Ed Nisley CC259)

Ed writes:

Repeatable and dependable measurements require a solid test fixture. Although the collection of parts in Photo 2 may look like a kludge, it’s an exemplar of the “ugly construction” technique that’s actually a good way to build RF circuits. “Some Thoughts on Breadboarding,” by Wes Hayword, W7ZOI, gives details and suggestions for constructing RF projects above a solid printed circuit board (PCB) ground plane.

You can read this article now in Circuit Cellar 259. If you aren’t a subscriber, you can purchase a copy of the issue here.


GPS-Based Vehicle Timing & Tracking Project

The KartTracker’s Renesas kit (Source: Steve Lubbers CC259)

You can design and construct your own vehicle timing system at your workbench. Steve Lubbers did just that, and he describes his project in Circuit Cellar 259 (February 2012). He calls his design the “Kart Tracker,” which he built around a Renesas Electronics Corp. RX62N RDK. In fact, Steve writes that the kit has most of what’s need to bring such a design to fruition:

Most of the pieces of my KartTracker are already built into the Renesas Electronics RX62N development board (see Figure 1). The liquid crystal display (LCD) on the development board operates as the user interface and shows the driver what is happening as he races. The integrated accelerometer can be used to record the G forces experienced while racing. A serial port provides connections to a GPS receiver and a wireless transmitter. Removable flash memory stores all the race data so you can brag to your friends. You now have all of the pieces of my KartTracker.

The following block diagram depicts the relationship between the CPU, base station, flash drive, and other key components:

KartTracker Diagram (Source: Steve Lubbers CC259)

The software for the system is fairly straightforward. Steve writes:

The KartTracker software was built around the UART software sample provided with the RX62N development kit. To provide file system support, the Renesas microSD/Tiny FAT software was added. Finally, my custom GPS KartTracker software was added to the Renesas samples. My software consists of GPS, navigation, waypoints, and display modules. Support software was added to interface to the UART serial port, the file system, and the user display and control on the RX62N circuit board.

Pseudocode for the main processing loop (Source: Steve Lubbers CC259)

Read Steve’s article in the February issue for more details.

If you want to build a similar system, you should get familiar with the Renesas RX62N RDK. In the following video, Dave Jones of EEVBlog provides a quick and useful introduction to the RX62N RDK and its specs (Source: Renesas).

Good luck with this project. Be sure to keep Circuit Cellar posted on your progress!

Click here to purchase Circuit Cellar 259.